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Abstract 

 

Visual statistical learning (VSL) describes how humans automatically and implicitly become 

sensitive to the statistics of visual input in the absence of supervision or reinforcement. Re-

search on VSL usually focuses on learning either temporal or spatial regularities and almost 

always excludes the influence of prior knowledge. In this dissertation, I present a reconceptu-

alization of VSL as part of a larger human unsupervised learning system operating by combin-

ing lower-level spatio-temporal co-occurrence statistics and higher-level top-down biases. I 

identified three types of higher-level biases affecting statistical learning: (1) pre-existing biases 

independent of properties of the experiment, (2) biases formed based on the abstraction of 

learned low-level statistics, and (3) biases based on observed higher-level features of the input. 

Furthermore, I identified important moderators of this hierarchical learning system: explicit-

ness and consolidation of knowledge. 

Extending the classical spatial VSL paradigm to a transfer learning paradigm, I found 

that while participants with explicit knowledge could immediately abstract from their acquired 

representations and generalize to novel input, participants with implicit knowledge showed a 

structural novelty effect in immediate transfer. This means they were better at learning novel 

input that was not aligned with what they had learned before. However, after a period of asleep 

consolidation, participants with implicit knowledge switched their behavior and showed gen-

eralization, as the participants with explicit knowledge did before. Using control experiments, 

I confirmed that this effect is specific to sleep and could not be explained simply by time pass-

ing or a time-of-day effect. Furthermore, using matched sample analysis, I demonstrated that 

differences in the strength of initial learning cannot explain the qualitative differences found 

between participants with explicit and implicit knowledge. 
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In order to combine the previously disjoint lines of spatial and temporal VSL, I devel-

oped a novel spatio-temporal visual statistical learning paradigm. There, spatially defined pat-

terns were unfolding to the observer over time. I demonstrated that implicit learning is possible 

for spatio-temporal input and provided experimental evidence that the temporal statistics of the 

input were used for the implicit acquisition of spatial patterns. Furthermore, I showed that when 

confronting participants with the complexity of spatio-temporal input, top-down, bottom-up 

interactions naturally emerged, linking this line of research with the VSL transfer learning par-

adigm described above. I found that both the overall motion direction and the overall arrange-

ment of shapes can bias participants learning and their beliefs about what types of structures 

are present in the input. Furthermore, by combining the spatio-temporal VSL paradigm with a 

prediction task, I found that participants with explicit knowledge but not participants with im-

plicit knowledge can use it for prediction, adding to the findings on differences between explicit 

and implicit representations described above. 

Overall, this dissertation demonstrates that the narrow limitation and control that ena-

bled the initial success of VSL research need to be carefully and incrementally overcome to 

understand the role of VSL in the overall human cognitive system. It does so by introducing 

two new VSL paradigms that enable novel, systematic ways of investigating the human unsu-

pervised learning system.  
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CHAPTER 1 

 

Introduction 

 

Statistical learning (SL) is a form of unsupervised implicit learning that automatically allows 

humans and other animals to become sensitive to regularities in perceptual input. Due to the 

vast amount of perceptual input that people experience and the common absence of obvious 

reinforcement or labeling, such learning is critical. SL is often treated as a bottom-up process 

for identifying and storing reappearing patterns in perceptual input based on elementwise co-

occurrence statistics. Most research in SL tried to eliminate top-down influences to isolate the 

effects of varying input statistics while eliminating the effects of prior knowledge. However, 

there is mounting evidence that this simplification does not hold up to the ecological role of 

SL. The first objective of this dissertation was a reconceptualization of visual statistical learn-

ing (VSL), putting bottom-up and top-down influences on equal standing and showing that 

what is canonically called VSL is part of a larger, hierarchically structured system of human 

unsupervised learning. This aims to combine previously separated approaches and concepts 

from outside and within the statistical learning literature, showing how our understanding of 

the underlying phenomena can be advanced this way. 

Artificial separations also exist within the SL literature. Almost all of the VSL literature 

focused either on spatial or temporal regularities, ignoring that real-world visual input is always 

a combination of both. Due to the nature of ecologically relevant visual input, fully understand-

ing the role and mechanism of VSL requires us to understand how it deals with spatio-temporal 

regularities. Therefore, the second objective of this dissertation was the development of a joint 

spatio-temporal VSL paradigm to enable systematic investigations of how the temporal and 

spatial statistics of the input interact in unsupervised learning. As a corollary of this step 
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towards real-world complexity, we saw that bottom-up, top-down interactions naturally come 

into sight. Overall, the findings presented in this dissertation paint a picture of VSL as an in-

teraction of lower-level spatio-temporal co-occurrence statistics and higher-level top-down bi-

ases. Therein, the multitude of available features across levels are flexible combined to achieve 

a congruent and comprehensive yet parsimonious interpretation of the world. 

The current chapter defines key terminology and summarizes the dissertation's main 

argument, justifying and contextualizing it with previous statistical learning research and fore-

shadowing the main results of the dissertation. I show that while statistical learning paradigms 

were initially designed to focus on low-level co-occurrence statistics and exclude any higher-

level knowledge (1.1.1), it was later shown that SL is critically influenced by higher-level 

knowledge (1.1.2), and propose a view of statistical learning as part of a larger, hierarchically 

structured, unsupervised learning system (1.1.3). I furthermore argue that the artificial separa-

tion of visual statistical learning research into a spatial and a temporal literature is detrimental 

to understanding how humans' unsupervised learning of visual input can operate in ecologically 

relevant settings, introducing a novel spatio-temporal VSL paradigm (1.1.4). 
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Figure 1.1 Statistical Learning Paradigms. Top panel. The original auditory statistical learning 

setup. An inventory of words is created by random combination of three syllables each. Partic-

ipants are presented with a continuous stream of these words, with transitional probabilities as 

the only segmentation cue between words. Middle panel. The temporal visual statistical learn-

ing setup. A direct translation of the auditory setup into the visual domain, where fixed combi-

nations of shapes are presented visually. Bottom panel. The spatial visual statistical learning 

setup. This translates the original idea into the spatial domain, by creating scenes as combina-

tions of fixed spatial shape pairs. There are again no segmentation cues between the chunks. 

All colors are only for illustration purposes. Participants see shapes as black-and-white. 
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1.1 General Definitions 

1.1.1 Statistical Learning 

Aslin and Newport (2012) defined statistical learning in the following way:  

[…] a rapid and robust mechanism that enables adults and infants to extract patterns 

embedded in both language and visual domains. Statistical learning operates implicitly, 

without instruction, through mere exposure to a set of input stimuli (p. 170). 

 

This definition of SL contains a number of key features that, in combination, distinguish SL 

from other forms of learning. First, SL is a form of unsupervised learning (Barlow, 1989) rather 

than supervised or reinforcement learning (Jordan & Mitchell, 2015), suggesting that it is based 

on discovering patterns in the input data rather than learning prespecified input-output map-

pings or reward contingencies. This is simultaneously in line with the vast majority of humans' 

ecologically relevant learning situations and in contrast with the bulk of psychological research 

on learning (Barlow, 1989; G. Hinton, 2014; G. E. Hinton, 2010). Second, SL is an implicit 

form of learning, suggesting that it builds knowledge without building awareness of the 

knowledge (Zoltán Dienes & Berry, 1997). This again contrasts with the bulk of research on 

learning, which focuses more on explicit learning (Reber, 1989). Third, SL discovers patterns 

in unsegmented input, where the item co-occurrence statistics reveal how the input can be seg-

mented into its constituting elements. Again, this property sets SL apart from the usually highly 

segmented input used in learning research. Fourth, SL allows for rapid learning, where partic-

ipants show long-lasting familiarization with an input stream after only a few minutes (Kim et 

al., 2009). Lastly, SL is not seen as modality-specific but operates at least on auditory (Saffran 

et al., 1996), visual (Fiser & Aslin, 2001), and haptic (Lengyel et al., 2019) input (Figure 1.1). 

 

1.1.2 Structure Learning 

The almost exclusive focus of research on statistical learning is learning specific reappearing 

patterns in unsegmented perceptual input. This can be contrasted with the learning of more 
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abstract properties of the input, which can be achieved by abstracting from several observed or 

learned instances, usually studied for more segmented input under labels such as rules 

(Geambașu et al., 2023; Marcus et al., 1999), concepts (Bruner et al., 1956), schemas (Bartlett, 

1932), and grammars (Reber, 1967). Which term is used depends on the specific experimental 

paradigm and carries different historical and empirical connotations. As an overarching term, I 

will use structure learning to refer to learning the abstract, latent structure underlying percep-

tual input. Therefore, for the purposes of this thesis, I use the term statistical learning to refer 

to the extraction of reappearing chunks from unsegmented input, while I use the term structure 

learning to refer to abstracting what is shared between multiple chunks. I consider this to be on 

a higher level of abstraction than statistical learning, as abstraction critically builds on the 

extraction of commonalities between several instances (Blackburn, 2008). In this case, the in-

stances are the chunk representations built during statistical learning. 

 

1.1.3 Explicit and Implicit: Learning, Tasks, and Instructions 

The definition of statistical learning quoted in section 1.1.1 points out that statistical learning 

operates implicitly. However, what does this term and the related term explicitly mean? As this 

is a key concept in the SL literature at large, and for this dissertation specifically, in the current 

section, I will give an overview of what those terms can mean and how they are used here. As 

with many key terms in psychological research, the explicit-implicit distinction has not been 

used consistently to describe one specific aspect or phenomenon. There are at least three major 

ways in which these terms are used: 

1. Talking about explicit and implicit knowledge or representations, these terms seem to 

be a replacement for the unfashionable terms conscious and unconscious, specifically 

in the sense of access consciousness (Block, 1995). In this sense, implicit knowledge 
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describes that a person has knowledge of something but is not aware of having it, sug-

gesting that the utilization of this knowledge is not under rational control. 

2. Talking about explicit and implicit tasks or tests, these terms describe if a participant in 

an experiment is aware of the fact that they have to apply previously acquired 

knowledge, i.e., they have to make an explicit judgment (Turk-Browne et al., 2005). It 

is, therefore, not referring to a person's knowledge about their mental states or repre-

sentations but their knowledge about the experimental task at hand or how their 

knowledge relates to that task. 

3. Talking about explicit or implicit instructions, in the context of SL research, these terms 

describe whether or not participants are told about the existence of regularities to be 

learned embedded in the input stream (also referred to as intentional vs. incidental con-

ditions, (Arciuli et al., 2014)). It is, therefore, about what type of prior information par-

ticipants receive about what is to be learned. 

Unfortunately, researchers do not always clearly indicate which meaning of explicit/implicit 

they are referring to. To further complicate things, in some cases, these different meanings have 

been equated or confounded, assuming that an explicit task is a measure of only explicit 

knowledge and an implicit task is a measure of only implicit knowledge (Baker et al., 2004; 

Kim et al., 2009). It is not clear what theoretical conceptualization of explicit and implicit 

knowledge underlies this equation. For the purpose of this dissertation, I follow the approach 

of Dienes (Zoltán Dienes, 2007; Zoltán Dienes & Berry, 1997), building on the idea that im-

plicit knowledge exists if a person knows something without being able to report that 

knowledge. This is operationalized by relating objective performance measures with subjective 

reports. The key idea is that if participants perform above chance on the objective measure 

while the subjective report does not indicate access to knowledge, implicit knowledge is pre-

sent and has been used. For my studies, the subjective report utilized is open-ended questions 
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at the end of the experiments, probing whether participants have any knowledge about the un-

derlying structure of the used visual scenes. In this dissertation, I used the terms participants 

with explicit knowledge or participants with explicit representations to refer to participants that 

are able to report relevant structures in subjective reports. In contrast, I use the terms partici-

pants with implicit knowledge or participants with implicit representations to refer to partici-

pants that are not able to do so. In the spirit of readability, I also use the shortcuts explicit 

participants and implicit participants to refer to the same. When using the terms explicit/im-

plicit in any other sense (points 2 and 3 from above) this is clearly pointed out. 

 

1.2 Statistical Learning Based on Low-Level Statistics 

The origins of research on statistical learning lie in developmental language research, demon-

strating that infants can acquire basic building blocks of unsegmented linguistic input in an 

unsupervised learning setup (Saffran et al., 1996). It has quickly been extended to other do-

mains, showing how adults and infants can similarly deal with unsegmented visual input (Fiser 

& Aslin, 2001, 2002b), termed visual statistical learning (VSL). 

Early work in both auditory (Aslin et al., 1998; Saffran et al., 1996) and visual (Fiser 

& Aslin, 2001, 2002b) statistical learning demonstrated that infants and adults can learn both 

the joint and conditional probabilities between elements in the input. The conditional proba-

bility can be seen as a measure of predictability, demonstrating that statistical learning is more 

than merely counting item co-occurrence. Going beyond that, for the visual domain, it was also 

demonstrated that adult participants evade the challenge of the combinatorial explosion, which 

would make learning item-item statistics in situations with real-world complexity practically 

impossible, by parsimoniously learning a set of item chunks that is sufficient to explain the 

input (Fiser & Aslin, 2005; Orbán et al., 2008). Taken together, these studies demonstrate that 

C
E

U
eT

D
C

ol
le

ct
io

n



8 

SL is more than simply keeping track of frequencies; instead, it builds representations that are 

as simple as possible while being able to explain the input based on low-level statistics. 

A variety of computational models have been suggested to explain human statistical 

learning (Endress & Johnson, 2021; Mareschal & French, 2017; Orbán et al., 2008; Thiessen, 

2017). Although they differ widely in grand computational principles and detailed implemen-

tation, they are all based exclusively on learning based on current low-level input statistics, 

ignoring potential abstract and hierarchical representations of the input. This can be understood 

in light of the fundamental debates in the statistical learning literature and the experimental 

paradigms providing the data to be modeled. 

 

1.3 Statistical Learning Based on Higher-Level Biases 

Experimental paradigms in statistical learning are usually designed to eliminate the influence 

of prior knowledge by using randomized combinations of arbitrary stimuli and carefully con-

trolled procedures. The idea is that all that is left to learn are the item-item co-occurrence sta-

tistics, unbiased by existing associations. The initial efforts in the SL literature to exclude the 

effects of any prior knowledge on learning were based on debates in the linguistics literature 

on how much prior knowledge is necessary for language learning (Chomsky, 1959). In this 

sense, the original SL paradigm (Saffran et al., 1996) was purposefully extreme in its limitation 

of relevant prior knowledge to achieve a proof-of-concept demonstration. This was followed 

by numerous studies treating SL as a purely bottom-up process and manipulating various as-

pects of the input statistics to study the properties of this bottom-up information processing. Of 

course, this does not necessarily suggest a serious theoretical conviction that the process of 

statistical learning is not practically influenced by prior knowledge in many real-world situa-

tions. 
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Several recent studies directly demonstrated the effect of prior knowledge on statistical 

learning. It was shown that linguistic knowledge acquired over a lifetime influences what is 

learned in an SL paradigm (Gómez Varela et al., 2024; Stärk et al., 2022), that prior associations 

about stimuli used in an SL setup influence future processing and learning involving these 

stimuli (Antovich & Graf Estes, 2023; Chough & Zinszer, 2022; Kóbor et al., 2020), that fa-

cilitating learning of specific structures guides future learning (Zettersten et al., 2020), and that 

knowledge about the structure of the input provided explicitly can boost statistical learning 

under some conditions (Arciuli et al., 2014; Bertels et al., 2015). Taken together, these studies 

demonstrate different ways in which prior knowledge has an impact on statistical learning. This 

also highlights how a paradigm originally designed to exclude any effects of prior knowledge, 

can itself be a useful tool to study exactly these influences. By starting from such a design, 

researchers can systematically introduce different types of prior knowledge to study their ef-

fects in isolation. 

 

1.4 Statistical Learning Based on Low-Level – High-Level Interactions 

We can see that although SL paradigms were initially designed to exclude the influence of prior 

knowledge, statistical learning will interact with such knowledge if we leave the most narrowly 

controlled setups. In this dissertation, I take the position that what is commonly referred to as 

statistical learning is part of a larger, hierarchically structured, human unsupervised learning 

system, which is based on interactions of low-level co-occurrence statistics and higher-lever 

structural knowledge. The general idea here is that in this system, there are ongoing interactions 

between lower and higher levels of abstraction, where what is learned on the lower level is 

constrained by what is learned on the higher levels while simultaneously constraining what is 

learned on these higher levels. This realizes a reciprocal constraining of learning at different 

levels, intending to reach a hierarchical model of the process in the world that causes the 
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sensory input. This idea was formulated before for unsupervised learning of more abstract con-

ceptual knowledge using hierarchical Bayesian models (Kemp & Tenenbaum, 2008; 

Tenenbaum et al., 2011; Ullman et al., 2018) and is here applied to the unsupervised learning 

of patterns in perceptual input. The aim of this thesis is not to reapply these existing computa-

tional models to the experimental paradigms found in SL research. Instead, the goal is to em-

pirically demonstrate that interactions across levels of abstraction arise in human unsupervised 

learning and identify some critical moderators that would not be obviously following from 

computational models. Specifically, I empirically show that phases of consolidation and the 

explicitness of knowledge are major moderators of unsupervised learning across levels of ab-

straction. 

Empirically, this is realized by extending the existing spatial visual statistical learning 

paradigm to an unsupervised transfer learning paradigm. This way, we can see, under direct 

experimental control, how what was previously learned interacts with the acquisition of new 

representations and biases them in specific ways. In Chapter 2, I present a series of five exper-

iments utilizing this paradigm to show that participants with explicit knowledge can abstract 

and generalize the types of structure underlying a statistical learning task immediately, while 

participants with implicit knowledge show a structural novelty effect in immediate transfer and 

application of knowledge. In Chapter 3, I present a series of three experiments that utilize the 

same principal paradigm but introduce phases of consolidation of different quality and dura-

tion. The results show that participants with implicit knowledge show abstraction and general-

ization after a phase of asleep but not awake consolidation. Overall, the findings of Chapters 2 

and 3 demonstrate that unsupervised structure learning critically interacts with both the explic-

itness of knowledge and phases of consolidation. 
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1.5 Spatio-temporal Visual Statistical Learning 

As discussed in section 1.1.1, the bulk of research in statistical learning is concerned with item-

item co-occurrence statistics. While studies in the auditory domain naturally focus on the tem-

poral statistics of elements in the input (usually syllables), in the visual domain studies focus 

either on temporal (Fiser & Aslin, 2002a; Kirkham et al., 2002) or spatial (Fiser & Aslin, 2001; 

Yu & Zhao, 2018) statistics of elements in the input (objects or abstract shapes) (see Figure 

1.1). However, real-world visual input is not either spatial or temporal but always both. Spatial 

patterns unfold to the observer over time and the temporal order of spatial patterns is not arbi-

trary. Although it is useful to be able to separate spatial and temporal regularities and study 

them independently, the interaction of the two during natural vision can only be understood by 

studying them together. Therefore, if the goal is to understand how the human unsupervised 

learning system can deal with real-world input, it is insufficient to study the learning of regu-

larities in these two dimensions in isolation. To address this, I developed a novel spatio-tem-

poral VSL paradigm in which spatial patterns are presented over time. In Chapter 4, I present 

a series of five experiments that demonstrate that implicit learning is possible in a spatio-tem-

poral setup and that temporal regularities are used in the implicit learning of spatial patterns. 

This therefore supports both the feasibility and the necessity of such an approach in VSL re-

search. In Chapter 5, this new spatio-temporal VSL setup is connected to the previous chapters 

by demonstrating that higher-level spatial and temporal features of the input, transcending low-

level co-occurrence statistics, are used in implicit learning, and that there are qualitative differ-

ences in how explicit and implicit knowledge can be utilized. Specifically, in two experiments 

I show that features such as an overall perceived motion direction or overall orientation of 

shape arrangement bias participants beliefs about what types of structure are present. This com-

plements the findings of Chapters 2 and 3, by showing that biases about types of structures 

cannot only be abstracted from prior learning of specific patterns, but can also be induced by 
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higher-level features of the input. In an additional experiment I show that while participants 

with explicit knowledge can use their knowledge for a prediction task, participants with im-

plicit knowledge cannot. This again complements findings from previous chapters, demonstrat-

ing differences in the utilization of explicit and implicit knowledge. 

 

1.6 Summary of Results 

Overall, the findings presented in this dissertation paint a picture of VSL as a combination of 

lower-level spatio-temporal co-occurrence statistics (Chapter 4, Experiments 4a-b, 5a-c) and 

higher-level top-down biases (Chapters 2 and 3, Experiments 1a-c, 2a-b, 3a-b), where the mul-

titude of available features across levels are flexibly combined to achieve a congruent and com-

prehensive, yet parsimonious interpretation of the input (Chapter 5, Experiments 6a-b). I iden-

tified three different types of higher-level biases: pre-existing biases that are independent of 

properties of the experiment (Chapter 2, Experiment 2b), biases formed based on the abstrac-

tion of learned low-level statistics (Chapters 2 and 3, Experiments 1a-c, 2a-b, 3a-b), and biases 

based on observed higher-level features of the input (Chapter 5, Experiments 6a-b). Addition-

ally, two critical moderators of this hierarchical learning system are identified: explicitness and 

consolidation. The explicitness of knowledge crucially influences how it can be applied to new 

input for generalization and prediction (Chapters 2 and 5, Experiments 1a-c, 2a-b, 7). Consol-

idation of knowledge enables generalization of the structure of the input even in the absence of 

explicitness (Chapter 3, Experiment 3a, 3c). Taking all these findings together, this dissertation 

demonstrates that the narrow limitation and control that enabled the initial success of SL re-

search need to be carefully and incrementally overcome to understand the role of SL in the 

overall human cognitive system. It does so by introducing two new VSL paradigms that enable 

novel, systematic ways of investigating the human unsupervised learning system. 

  

C
E

U
eT

D
C

ol
le

ct
io

n



13 

CHAPTER 2 

 

Structural Knowledge in Visual Statistical Learning 

 

The study presented in this chapter relates what is usually called statistical learning to the learn-

ing of more abstract, structural features and transferring such structural knowledge to novel 

learning or decision-making. I present a series of five experiments utilizing a transfer learning 

version of the classical statistical learning paradigm to show that participants with explicit 

knowledge can abstract and generalize the types of structure underlying a statistical learning 

task immediately, while participants with implicit knowledge show a structural novelty effect 

in immediate transfer and utilization of knowledge. 

 

2.1 Abstraction and Structural Transfer 

Humans store and use knowledge about the world at different levels of abstraction. For exam-

ple, we can have specific knowledge about a particular table that we have encountered before 

and remember its approximate height, material, and other features. On the other hand,  we can 

also have conceptual or categorical knowledge about tables in general; the range of measure-

ments, materials, and configurations of parts of the objects we would consider tables. It has 

been empirically demonstrated that visual statistical learning can operate either at the level of 

individual items or at the categorical level (Jun & Chong, 2016, 2018; Jung et al., 2021; Rogers 

et al., 2021; Sherman et al., 2023), and perceptual and contextual factors have been identified 

that influence which regularities are preferably learned (Aslin & Newport, 2012; Emberson & 

Rubinstein, 2016). Although these investigations are useful in their own right, this compart-

mentalized approach isolates the learning at different levels of abstraction and conceptualizes 

them as independent tasks, even though acknowledging that they are realized via the same 
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statistical learning mechanism. However, since abstraction critically builds on the extraction of 

commonalities between several instances (Blackburn, 2008), a more fruitful approach might 

be to ask how learning the statistical regularities of specific objects leads to the abstraction of 

their shared underlying structure to form conceptual/structural knowledge. In this chapter, I 

will use the term statistical learning to refer to the extraction of re-appearing chunks from un-

segmented input, while by structure learning, I will refer to the process of abstracting what is 

shared between multiple chunks. The term structural transfer then refers to generalizing what 

has been abstracted to novel input. 

There exists a vast literature tackling abstract learning of underlying structures such as 

rules (Geambașu et al., 2023; Marcus et al., 1999), concepts (Ashby & Maddox, 2011; Bruner 

et al., 1956), schemas (Bartlett, 1932; Gilboa & Marlatte, 2017), and grammars (Pothos, 2007; 

Reber, 1967). However, due to their focus, such studies usually start from a point where the 

major challenge of statistical learning is already assumed to be completed: they work with 

either familiar or at least highly segmented input, in which the basic units from which a concept 

needs to be abstracted are readily available. In contrast, participants in typical statistical learn-

ing studies need to find patterns without available segmentation cues, but these patterns usually 

do not have more abstract regularities over multiple different patterns. However, these two 

types of learning cannot be isolated from each other as the ongoing interaction with the real 

world is iterative and does not adhere to encapsulated phases where the different processes 

work in isolation, as in psychological experiments. The key idea underlying the work presented 

in this chapter is that since these two mechanisms cannot be isolated in ecological settings and 

they always co-function, understanding them also requires understanding how they interact. 

Therefore, the overall objective of this chapter is to empirically investigate unsupervised learn-

ing that starts from unsegmented input and spans multiple levels of abstraction. 
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As previewed in the Introduction (1.1.3), the last decades saw remarkable progress in 

theoretical and computational models that can build representational hierarchies at increasing 

levels of abstraction without the need for supervision (Heald et al., 2021; Kemp & Tenenbaum, 

2008; Lake et al., 2015; Zhuang et al., 2021). Much of the advances in our computational un-

derstanding of the unsupervised learning of hierarchies of abstraction are based on a class of 

computational models called hierarchical Bayesian models (Kemp & Tenenbaum, 2008), 

which critically builds on the interaction and mutual constraining of representations over dif-

ferent levels of abstraction. This means that whatever is learned at the lower levels will con-

strain what can be learned on the higher level, and reciprocally and simultaneously, it is also 

constrained by acquired knowledge at the higher level. The levels of the hierarchy interact in 

order to reach an overall best-fitting hierarchical description of the process generating the input 

(technically, a best-fitting probability distribution over parameters of the hierarchical model). 

This view establishes a natural connection between themes introduced in the current and the 

previous chapter as such hierarchical Bayesian models realize an iterative formation of repre-

sentation, which uses the existing prior knowledge, realize abstraction by discovering shared 

structure, and in turn, uses discovered structure to constrain learning of specific instances. 

Despite these computational advances, the situation is much more mixed on the exper-

imental side. Several lines of research focus on learning hierarchically structured representa-

tions based on explicit supervision or reinforcement and describe fundamental features of such 

learning (Behrens et al., 2018; Eckstein & Collins, 2020; Lewis & Durrant, 2011). Markedly 

less empirical knowledge has been accumulated about whether and how humans and animals 

develop hierarchical internal representations without explicit guidance, even though such 

learning constitutes the vast majority of knowledge acquisition in natural settings (Barlow, 

1989). It is precisely this gap that the current study starts to address. 
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Based on previous research in various domains, I hypothesized that explicitness might 

be an important moderator in the process described above. First, statistical learning is usually 

defined as a form of implicit learning leading to implicit knowledge (Aslin & Newport, 2012), 

although it was demonstrated that during typical SL setups, explicit knowledge can arise 

(Bertels et al., 2012; Goujon et al., 2014; Kim et al., 2009; H. Liu et al., 2023). Conversely, 

learning more abstract features has been routinely studied under assumptions of explicit 

knowledge but is also demonstrated for implicit knowledge (Reber, 1967). Second, it has pre-

viously been shown that explicit and implicit forms of learning can follow different rules in 

various domains (Ball et al., 2021; Bloch et al., 2016; Robertson et al., 2004; Yang & Li, 2012). 

Third, although explicitness of knowledge is conceptually broader than just the ability to ver-

balize knowledge, the two are related (Dienes & Perner, 1999), and verbalizability is my pri-

mary measure of explicitness in this study. A large body of research has argued for a role of 

language-based processing for abstraction (Connell, 2018; Davis & Yee, 2018; Jiang et al., 

2019; Lupyan & Lewis, 2017; Sloutsky & Deng, 2017). Taken together, these findings suggest 

that the explicitness of knowledge might be an important moderator of unsupervised learning 

over the levels of abstraction investigated in this chapter. Therefore, the analyses for all exper-

iments in this study focus on the interaction of abstraction, as demonstrated by structural trans-

fer, and the explicitness of knowledge, as demonstrated by the ability to verbalize knowledge. 

In order to experimentally combine statistical learning with the learning of more abstract fea-

tures, I extended the classic spatial visual statistical learning setup (Fiser & Aslin, 2001) to an 

unsupervised transfer learning paradigm. In this chapter, I present a series of five experiments 

utilizing this paradigm to show that participants with explicit knowledge can abstract and gen-

eralize the types of structure underlying a statistical learning task immediately, while partici-

pants with implicit knowledge show a structural novelty effect in immediate transfer (2.2) and 

application (2.3) of knowledge. 
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Figure 2.1 Statistical Learning Paradigm - 1 Training Phase 1 The first training phase follows 

the classical spatial VSL paradigm, presenting scenes made from shape pairs without segmen-

tation cues. All colours are only for illustration; for participants, everything is black and white. 

For this learning phase, all pairs have the same orientation (horizontal or vertical), counterbal-

anced between participants. Break The break after the first training phase varies between Ex-

periments as described in the figure. Training Phase 2 The second training phase consists of 

novel scenes, made from novel shapes. In this phase all participants see horizontal and vertical 

pairs. 2AFC Test Trials In all 2AFC test trials, participants are presented with a real pair from 

the training phases and a foil pair made by combining shapes of two real pairs. They need to 

decide which of the two shape pairs seems more familiar. Debriefing After the experiment 

participants answer a set of open questions which are used to assess whether they have explicit 

knowledge of the presence of pairs in the input. 

 

2.2  Learning Based on Induced Biases 

2.2.1 Experiment 1a: The Structural Novelty Effect in Implicit Transfer Learning 

Experiment 1a was designed to deliver a first proof of concept that the shared structure under-

lying several chunks learned during classical spatial visual statistical learning influences the 

subsequent learning of new chunks. The experimental setup builds on the standard spatial VSL 

paradigm (Fiser & Aslin, 2001), extending it to a transfer learning paradigm (Figure 2.1). This 

paradigm is the ideal candidate for investigating the unsupervised learning of higher-order 

structures as it uses unsegmented input and investigates the learning of specific patterns of 

fixed combinations of shapes (chunks), which can easily be created from different underlying 

structures. The underlying structure used in the current series of experiments is the orientation 

of shape pairs, i.e., whether the shapes of a pair are arranged horizontally or vertically. Criti-

cally, due to the nature of the spatial VSL setup, the orientation is not an obvious property of 
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the scenes per se and cannot be directly observed as there are no segmentation cues between 

chunks. The orientation is a property of the association between shapes and can, therefore, only 

be learned in conjunction with learning these associations. This transfer learning version of the 

VSL paradigm goes beyond simply asking if a previously used structure is recognized and 

instead measures how exposure to one type of structure differentially influences the acquisition 

of multiple types of structures later on. By also probing the explicitness of participants' 

knowledge, we can then look at the interaction of explicitness of knowledge and the type of 

structures learned. 

 

Participants 

251 participants (92 female, mean age = 28.0, SD = 9.5) were recruited via prolific.co. The 

hourly compensation was £ 6.3. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to achieve 80% power for expected small to medium effect sizes (d = 

0.4) in paired t-tests, accounting for a high number of multiple comparisons (therefore: α = 

.005). The power analysis conducted with the pwr R package (Champely et al., 2017) suggested 

a needed sample of 168.38, which I generously bolstered to account for expected high exclu-

sions for an online study and the subset of explicit participants. The study was approved by the 

Hungarian United Ethical Review Committee for Research in Psychology (EPKEB), and all 

participants provided informed consent. 

 

Materials 

The stimuli were taken from Fiser and Aslin (2001) and consisted of 20 abstract black shapes 

on a white background (see Figure 2.1). The shapes were grouped to form six pairs of the same 

orientation (horizontal or vertical; randomly assigned to participants) for the first learning 

phase and four pairs, two horizontal and two vertical, for the second learning phase. The 
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assignment of shapes to pairs was randomized for each participant, leading to superficially 

different scenes for each participant. Scenes were created by placing three pairs together on a 

3x3 grid without segmentation cues. 160 scenes were created for the first and 48 for the second 

learning phase. In the second learning phase, each scene was used twice for a total of 96 pre-

sented scenes. 

As this was an online study, participants conducted it on their own computers using 

Google Chrome, Safari, or Opera browser. Only desktop and laptop computers were admissi-

ble, and no smartphones or tablets. Stimuli were presented using custom JavaScript code built 

on the jsPsych library (version 6.1.0) (Leeuw, 2015). As participants used different devices 

(screen size and resolution), the visual angle of the shapes was not the exact same for all par-

ticipants. Instead, the 3x3 grid extended over 600x600 pixels and was centered in the middle 

of the screen. The remaining screen outside the grid was empty (white). 

 

Procedure 

Participants passively observed 160 scenes in the first training phase. For half of the partici-

pants, these scenes contained only horizontal pairs (horizontal condition), and for the other 

half, they contained only vertical pairs (vertical condition). Note that from the makeup of the 

scene, it was impossible to distinguish whether a scene was made up of horizontal or vertical 

pairs. Each scene was presented for 2 s with a 1 s interstimulus interval (ISI). After a two-

minute passive break, participants passively observed 96 scenes in the second training phase. 

Participants were not told about the presence of any structure in the scenes and were instructed 

to simply be attentive so that they could later answer simple questions. After half of each train-

ing phase, an attention check appeared, asking participants to press the spacebar to continue. 

Response time for the attention check was recorded to detect inattentive participants. After the 

second training phase, participants had another two-minute passive break. Following this, pair 
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learning was tested with a two-alternative forced choice task (2AFC). In each trial, participants 

saw a real shape pair from one of the training phases and a foil pair created by combining 

shapes from two different pairs of the same training phase. Overall, all real and foil pairs were 

used the same number of times during the test phase to ensure no learning effects within the 

test phase. Real and foil pairs were presented after each other in the 3x3 grid for 2 s with a 1 s 

ISI. The order of real and foil pairs was randomized. Participants were asked to indicate which 

of the two pairs was more familiar by pressing "1" or "2" on their keyboard. Participants first 

completed 16 trials using pairs from the second training phase, followed by 24 trials using pairs 

from the first training phase. Finally, participants answered five open questions about their 

beliefs about the experiment and their knowledge of pair structure (see Appendix A for the 

detailed questionnaire). 

 

Results 

Based on pilot data, I chose 20 seconds combined response time for both attention checks as 

the cut-off value for inclusion. 19 participants were rejected for failing this criterion. Response 

bias was defined as the proportion with which participants used one of the two response options 

("1" and "2"), and participants who were 2.5 SD away from the mean were excluded. 3 partic-

ipants were excluded for failing this criterion. This left us with 229 participants after exclu-

sions. Based on the open responses at the end of the experiment, participants were categorized 

into one of three groups. Participants who reported no knowledge of pairs were counted as 

implicit (n = 192), participants who reported knowledge of the presence of pairs were counted 

as explicit (n = 34), and participants who also reported the underlying horizontal/vertical struc-

ture were excluded from analysis (n = 3) as they were too few for meaningful analysis (whether 

or not these 3 particiapnts were included in the group of explicit participants did not signifi-

cantly change the results). 
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Participants' responses were summarized in three scores. Performance in the first train-

ing phase is the proportion correct for trials using pairs of that phase. Performance for the same 

structure pairs is the proportion correct for trials of the second training phase using pairs with 

the same orientation as the pairs of the first training phase (this can be horizontal or vertical, 

depending on the assigned condition). Performance for novel structure pairs is the proportion 

correct for trials of the second training phase using pairs with a different orientation than the 

pairs of the first training phase. Explorative analysis of the trials of the second training phase 

revealed a strong negative correlation between trials of the novel and the same structure (r = -

.432, p < .001). There are two potential explanations for this. First, individual participants only 

learn pairs of one or the other structure. Second, as the foil pairs used for one type of structure 

were created by recombining shapes of pairs of the other structure, this could be a type of 

consistency effect where participants tend to choose the same shapes, independent of pair 

knowledge. If the second interpretation is correct, we expect to see an increase in this negative 

correlation as participants complete more test trials. Indeed, we find that for the first eight trials, 

this correlation is r = -.209., while it increases to r = -.435 in the second 8 trials. Based on this 

exploration, I included only the first eight trials in all the following analyses to minimize this 

consistency effect. The following experiments use the same number of test trials to keep com-

parability, but again, I only analyze the first 8.  

The data was collapsed over vertical and horizontal conditions for all further analysis, 

as a 3x2 mixed ANOVA with test type (levels: training phase 1, same structure, novel structure) 

as within-subject factor and condition (levels: horizontal, vertical) as between-subject factor 

showed no significant main effect of condition (F(1, 224) = 0.776, p = .379, BF = 0.08, ηp
2 = 

.003) and no significant test type - condition interaction (F(2, 448) = 0.199, p = .820, BF =  

0.04, ηp
2 = .001). Bayes Factors (BF) reported for the ANOVA and t-tests here and throughout 

the dissertation are based on the BayesFactor R package, realizing Bayesian tests with models 
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analogous to the frequentist counterpart, and employing a JZS (Jeffrezs, Zellner, Siow) prior, 

unless specified otherwise (Rouder et al., 2012). P-values reported throughout the text were 

subject to experiment-wise correction for multiple comparisons using the Holm-Bonferroni 

method (Holm, 1979). 

The results (Figure 2.2 top panel) show above chance performance for the first training 

phase for both explicit (M = 67.9, SE = 4.6, d = 0.67, t(33) = 3.93, p = .002, BF = 70.8) and 

implicit (M = 55.0, SE = 1.1, d = 0.32, t(191) = 4.46, p < .001, BF = 919) participants. However, 

the performance was significantly higher for explicit participants (d = 0.73, t(224) = 2.75, p = 

.009, BF = 195). For the second learning phase, implicit participants show above chance per-

formance for pairs of the novel structure (M = 57.8, SE = 1.9, d = 0.30, t(191) = 4.16, p < .001, 

BF = 281), and chance performance for pairs of the same structure as before (M = 49.1, SE = 

2.1, d = 0.03, t(191) = -0.44, p = .659, BF = 0.09). The performance for these types of pairs is 

significantly different from each other (d = 0.20, t(382) = 2.78, p = .030, BF = 3.38). Explicit 

participants show the opposite pattern with above-chance performance for pairs of the same 

structure as before (M = 67.6, SE = 6.3, d = 0.48, t(33) = 2.81, p = .033, BF = 5.0), and chance 

performance for pairs of the novel structure (M = 58.1, SE = 5.6, d = 0.25, t(33) = 1.46, p = 

.465, BF = 0.48). However, for them, this difference is not significant (d = 0.19, t(33) = 1.12, 

p = .539, BF = 0.33). We do, however, see a significant, medium to large correlation between 

learning in the first training phase and learning pairs of the same structure in the second training 

phase (r = .45, p = .008) for the explicit participants. Such a correlation is not observed between 

learning in the first learning phase and learning pairs of the novel structure in the second learn-

ing phase (r = -.01, p = .947). The different patterns of transfer behavior for explicit and implicit 

participants are also confirmed when entering the data into a 2x2 mixed ANOVA with factors 

participant type (explicit or implicit) and structure type (novel or same). The results show a 

significant main effect of participant type (F(1, 224) = 8.03, p = .005, BF = 2.1, ηp
2 = .03)) and 
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of structure type (F(1, 224) = 4.05, p = .045, BF = 1.2, ηp
2 = .02)) as well as a significant 

interaction of both (F(1, 224) = 4.89, p = .028, BF = 31.6, ηp
2 = .02). 

To test for a possible time-of-day effect (Tandoc et al., 2021) in learning or generaliza-

tion, I correlated test performance with the hour of the day at which participants completed the 

experiment. There were no significant correlations for pairs of the same structure (explicit par-

ticipants: r = -.03, p = .882; implicit participants: r = .01, p = .893) or pairs of the novel structure 

(explicit participants: r = .13, p = .477; implicit participants: r = -.05, p = .458). Additionally, 

I looked separately at groups of participants completing the experiment early in the day (7-11 

am) and late in the day (7-11 pm). For implicit participants, there was no significant difference 

between participants that participated early (n = 23) or late (n = 22) as a 2x2 mixed ANOVA 

with hour-of-day and test type as factors showed no significant main effect of hour-of-day (F(1, 

43) = 0.019, p = .892, BF = 0.26) and no significant hour-of-day – test type interaction (F(1, 

43) = 0.095, p = .759, BF = 0.31). 

As reported above, explicit participants show higher average learning in the first learn-

ing phase, which could be what enables the generalization of the learned structure. To test this 

idea, I conducted a matched sample analysis (Ho et al., 2007). The general idea of this analysis 

is to create a sub-sample of the implicit participants that perform like the explicit participants 

for the pre-training trials (see Appendix C for details). The question, then, is how this sub-

sample performs for the same and novel structure trials. In a first step, I ran six applicable 

matching algorithms implemented in the MatchIt R package (Ho et al., 2011). The six created 

matched implicit samples were then compared to the original explicit sample according to four 

metrics: standardized mean difference, variance ratio, mean of the empirical cumulative den-

sity function, and maximum of the empirical cumulative density function. All comparisons can 

be seen in Supplementary Table 1 in Appendix C. The overall best fit was the nearest neighbor 

matching with replacement using propensity scores. I found that this sample showed a similar 
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pattern for learning in the second training phase as the original full sample (see Figure 2.2 

bottom panel). This is captured by a 2x2 ANOVA using the novel and same structure pairs for 

the original explicit and the matched implicit data showing a significant interaction (F(1, 87) 

= 8.53, p = .004, BF = 10.7, ηp
2 = .09) and post-hoc comparisons show a significant difference 

between novel and same structure trials for the synthetic implicit data (p = .012; BF = 3.6). 

This analysis suggests that the difference between the two groups is not merely based on dif-

ferent strengths of learning in the first training phase. 

 

Discussion 

The results of Experiment 1a show that the structure underlying multiple chunks acquired dur-

ing unsupervised learning biases subsequent learning. Critically, this structural bias points in 

opposite directions for explicit and implicit participants. Participants with explicit knowledge 

show structural transfer; they are able to generalize and, therefore, learn more new pairs of the 

same structure as before. However, participants with implicit knowledge show a structural 

novelty effect, learning more new pairs of a structure different from before. Importantly, using 

a matched sample analysis, it was shown that the differences in transfer behavior between ex-

plicit and implicit learners could not be explained by the explicit learners' overall higher learn-

ing outcomes in the first training phase. The type of transfer behavior is not predicted by the 

quantity of knowledge but by the quality of the knowledge - its explicitness. 
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Figure 2.2 Experiment 1a Results. Results of 2AFC familiarity tests in Experiment 1a. Test 

trials are grouped along the x-axis according to which training phase they appeared in, and for 

the second training phase, according to whether they follow the same or a different structure 

(horizontal or vertical) than the pairs of phase one. The y-axis represents the proportion of 

correct responses in the 2AFC test trials. Bars represent the standard error. Color coding indi-

cates implicit and explicit subgroups of the participants. The horizontal dotted line at 50% de-

notes chance performance. Asterisks above bars denote significance levels from chance, while 

above lines, significance level comparing two conditions below the tips of the line. The legend 

of significance levels is shown in the lower left corner. Top Panel Performance in Experiment 

1a. Bottom Panel Performance for matched sample in Experiment 1a (see methods). 
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2.2.2 Experiment 1b: Replication of the Structural Novelty Effect 

As the structural novelty effect found in Experiment 1a is novel and surprising, I conducted a 

close conceptual replication in order to ensure the robustness of the finding. Experiment 1b 

(Figure 2.3 top panel) follows the procedure of Experiment 1a but uses two types of diagonal 

pairs instead of horizontal and vertical pairs. These two types of diagonal pairs are orthogonal 

to each other, leading to the same logic of same and novel structure pairs as in Experiment 1a. 

 

Participants 

243 participants (128 female, mean age = 30.1, SD = 11.7) were recruited via prolific.co. The 

hourly compensation was £ 6.3. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to match that of Experiment 1a. The study was approved by the Psy-

chological Research Ethics Board of the Central European University, and all participants pro-

vided informed consent. 

 

Materials 

This experiment used the same materials as Experiment 1a. However, the shapes were not 

grouped into horizontal and vertical pairs but into two orthogonal groups of oblique pairs. For 

one group of pairs, the second shape was always in the top right grid cell from the first shape; 

for the other group of pairs, the second shape was always in the top left grid cell. As such pairs 

allow for fewer unique combinations within a 3x3 grid, the scenes for this Experiment were set 

in a 5x5 grid. The shapes mainly occupied the central 3x3 sub-grid, with one shape per scene 

being in the outer cells. All shapes appeared in the outer cells an equal number of times over 

all scenes. In order to ensure that the whole grid is visible on the participants' devices, the size 

was not set to a fixed pixel value. Instead, the size of one grid cell was set to 1/7 of the pixel 

height of the participant's screen. Therefore, the whole grid filled 5/7 of the screen height. 
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Procedure 

The procedure was identical to Experiment 1a. 

 

Results 

The exclusion criteria were identical to those used in Experiment 1a. This led to 15 exclusions 

for failed attention checks and four exclusions for response bias. This left us with 224 partici-

pants after exclusions. Participants were categorized as explicit or implicit in the same way as 

in Experiment 1a. This led to 12 participants being categorized as explicit and 212 as implicit. 

Bayes Factors from Bayesian t-tests for implicit participants reported for Experiment 1b used 

an r-scale parameter of .5 instead of the default √2/2, therefore changing the prior to reflect that 

Experiment 1a found small effect sizes for this group. 

Overall, the data shows the same pattern as in Experiment 1a. The results for the im-

plicit participants (n = 212) closely follow the results of Experiment 1a. They perform above 

chance for pairs of the first training phase (M = 53.9, SE = 0.8, d = 0.34, t(211) = 4.99, p < 

.001, BF = 1.0*104) and for pairs of a novel structure (M = 57.1, SE = 1.7, d = 0.28, t(211) = 

4.06, p < .001, BF = 245) but not pairs of the same structure (M = 50.1, SE = 1.8, d = 0.03, 

t(211) = 0.46, p = .999, BF = 0.12) in the second training phase. The performance for pairs of 

the same and novel structure is again significantly different (d = 0.18, t(211) = 2.67, p = .049, 

BF = 3.2).  The results for explicit participants (n = 12) show the same qualitative pattern as in 

Experiment 1a, however, without reaching a significant difference from chance: first training 

phase(M = 59.4, SE = 4.8, d = 0.56, t(11) = 1.95, p = .387, BF = 1.2), novel structure (M = 

52.1, SE = 10.4, d = 0.06, t(11) = 0.20, p = .999, BF = 0.29), same structure (M = 60.4, SE = 

7.8, d = 0.39, t(11) = 1.33, p = .084, BF = 0.59). This can be explained by the significantly 

smaller number of participants acquiring explicitness in Experiment 1b compared to 1a (Χ2 = 

10.47, df = 1, p = .001, BF = 37.0), resulting in diminished power for these tests. 

C
E

U
eT

D
C

ol
le

ct
io

n



28 

 

 

 

Figure 2.3 Experiments 1b and 1c Results. Results of 2AFC familiarity tests in Experiment 1a. 

Test trials are grouped along the x-axis according to which training phase they appeared in, and 

for the second training phase, according to whether they follow the same or a different structure 

(horizontal or vertical) than the pairs of phase one. The y-axis represents the proportion of 

correct responses in the 2AFC test trials. Bars represent the standard error. Color coding indi-

cates implicit and explicit subgroups of the participants. The horizontal dotted line at 50% de-

notes chance performance. The asterisks above bars denote significance levels from chance, 

while above lines they denote significance levels comparing two conditions. The legend of 

significance levels is shown in the lower left corner. Top Panel Performance in Experiment 1b. 

Bottom Panel Performance in Experiment 1c. 
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Discussion 

Experiment 1b replicated the structural novelty effect found for implicit participants in Exper-

iment 1a, therefore demonstrating the robustness of that finding. The pattern for explicit par-

ticipants could only descriptively be replicated, as the low rate of explicitness led to underpow-

ered tests. 

 

2.2.3 Experiment 1c: Investigating the Role of Explicitness in Structural Transfer 

The previously reported explicit-implicit distinction was quasi-experimental rather than true 

experimental since the groups were formed naturally. Therefore, it is unclear whether it is in-

deed explicitness that enables generalization or whether the two groups of participants differ 

in other important ways (e.g., task engagement or attentional processes). Experiment 1c was 

designed to answer this question by inducing explicitness and, therefore, testing if everyone 

can, in principle, show the type of behavior that participants who happened to attain explicit 

knowledge in Experiment 1a showed. 

 

Participants 

40 participants (18 female, mean age = 28.4, SD = 11.8) were recruited via prolific.co. All 

participants had normal or corrected-to-normal vision. The sample size was chosen to approx-

imately match the number of explicit participants in Experiment 1a after an expected exclusion 

rate of 10%. The hourly compensation was £ 6.3. The study was approved by the Hungarian 

United Ethical Review Committee for Research in Psychology (EPKEB), and all participants 

provided informed consent. 

 

Materials 

The materials were identical to Experiment 1a. 
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Procedure 

The procedure was identical to Experiment 1a, apart from the instructions. In this experiment, 

participants were told about the pair structure before the beginning of the experiment. Partici-

pants were told that whenever a specific shape appears in the grid a second specific shape will 

appear in a fixed position near it. 

 

Results 

The exclusion criteria were identical to those used in Experiment 1a. This led to 4 exclusions 

for failing the attention checks and 0 exclusions for response bias. This left us with 36 partici-

pants after exclusions. 

Overall, the results (Figure 2.3 bottom panel) show the same pattern as the explicit 

participants in Experiment 1a, with above-chance performance for pairs of the first training 

phase (M = 71.8, SE = 3.6, d = 1.01, t(35) = 6.07, p < .001, BF = 2.6*104) and for pairs of the 

same structure (M = 72.9, SE = 4.0, d = 0.95, i(35) = 5.69, p < .001, BF = 9,058) but not pairs 

of a novel structure (M = 52.8, SE = 5.8, d = 0.08, t(35) = .48, p = .634, BF = 0.20) in the 

second training phase. The performance for the same and novel structure pairs is significantly 

different (d = 0.64, t(35) = 3.83, p = .001, BF = 58.0). 

 

Discussion 

The results of Experiment 1c are very similar to those of participants with explicit knowledge 

in Experiment 1a. Experiment 1c, therefore, demonstrated that verbal instructions can easily 

induce the type of explicitness studied here and that it is, indeed, this explicit knowledge that 

drives the observed pattern of generalization. 
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2.3  Direct Utilization of Induced Biases 

All experiments reported so far are based on transferring structural knowledge from one learn-

ing phase to a second one. An open question is how participants behave when they need to 

apply the acquired structural knowledge directly to test trials instead of to new unsegmented 

input. That is, how can they apply their structural knowledge in decision-making rather than 

learning? Experiment 2a tested this by using only the pre-training phase of Experiment 1a, 

biasing participants with either vertical or only horizontal pairs and following it up with a series 

of new test trials, probing different aspects of the participants' representations. Critically, I 

tested participants' knowledge of the orientation of the learned pairs and their willingness to 

transfer orientation to novel pairs. However, this was not transfer to learning novel scenes, as 

in Experiment 1a, but to direct utilization in test trials providing horizontal and vertical choices. 

 

 

Figure 2.4 Direct Utilization of Induced Biases in Statistical Learning. Training Phase The 

training phase follows the classical spatial VSL paradigm, presenting scenes made from shape 

pairs without segmentation cues. All colors are only for illustration; for participants, everything 

is black and white. Participants in Experiment 2a see only horizontal or vertical pairs, as in 

Experiments 1a-c. Experiment 2b is a control condition using horizontal and vertical pairs for 

all participants. Break The break after the first training phase is identical to Experiments 1a-c. 

2AFC Test Trials In all 2AFC test trials, participants need to decide which of two shape pairs 

seems more familiar. In Standard Learning Trials trials, participants need to decide between a 

pair of the training phase and a random recombination of shapes from two pairs. In Spatial 

Learning Trials trials, participants see a pair used in the training phase twice, once in its correct 

orientation and once rotated by 90 degrees. In Bias Trials trials, participants see the same pair 

twice in different orientations. However, for these trials, the pair is either a foil pair from the 

Standard Learning trials or a combination of completely novel shapes. For these trials, there is 

no correct answer. Debriefing After the experiment, participants answer a set of open questions 

used to assess whether they have explicit knowledge of the presence of pairs in the input. 
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2.3.1 Experiment 2a: Direct Utilization of Structural Biases 

Participants 

120 participants (42 female, mean age = 26.9, SD = 8.5) were recruited via prolific.co. All 

participants had normal or corrected-to-normal vision. A smaller sample size than for the pre-

vious experiments (1a-c) was chosen based on the assumption that this simpler design should 

produce stronger and more consistent effects. The hourly compensation was £ 6.3. The study 

was approved by the Psychological Research Ethics Board of the Central European University, 

and all participants provided informed consent. 

 

Materials 

The same materials as in experiment 1a were used. 

 

Procedure 

The overall procedure was similar to that of experiment 1a (see Figure 2.4). However, partici-

pants only completed the first familiarization phase (using only horizontal or vertical pairs) and 

then moved on to test trials after a 2-minute break. In this experiment, participants completed 

four different types of test trials. First, in 24 standard learning trials, participants decided 

between a real pair and a foil pair, just as in Experiment 1a. Second, in 6 spatial learning trials, 

participants were presented with shapes of a real pair, once in the correct spatial arrangement 

and once rotated, e.g., correct horizontal and incorrect vertical arrangement of a pair. This test 

was used to assess whether participants knew in which orientation the pairs appeared during 

the training phase. Third, in 6 old-token bias trials, participants again decide between the same 

shapes in horizontal and vertical arrangement, however this time for foil pairs, i.e., a combina-

tion of shapes that did not reliably co-occur during training. Finally, fourth, 8 new-token bias 

trials used the same logic but employed never-before-seen shapes to form pairs instead of using 
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shapes from the familiarization phase. There were no correct answers in the two types of bias 

trials, and they served as a measure of bias toward generalization (same orientation as learned 

pairs) or toward structural novelty effect (orientation different from same pairs). The order of 

test trials was as follows. First, the spatial learning trials and the old-token bias trials were 

presented in an intermixed manner; this was followed by the new-token bias trials, and finally, 

the standard learning trials were shown. This ordering assured a balanced exposure to all 

shapes and orientations across time and a minimal retraining of the true pairs during the test. 

 

Results 

The same exclusion criteria were used as in Experiment 1a. This led to 5 exclusions for failed 

attention checks and 2 exclusions for response bias, leaving us with 113 participants after ex-

clusions. Participants were categorized as explicit or implicit in the same way as in experiment 

1a. This led to 22 participants being categorized as explicit and 91 as implicit. 

The results (Figure 2.5 top panel) of Experiment 2a showed that participants with im-

plicit knowledge (n = 91) performed above chance for the standard learning trials (M = 55.9, 

SE = 1.3, d = 0.49, t(90) = 4.66, p < .001, BF = 1,494) but not for the spatial learning trials (M 

= 50.2, SE = 2.7, d = 0.01, t(90) = 0.07, p = .999, BF = 0.12). Therefore, they could correctly 

identify which shapes co-occurred but not in what arrangement they co-occurred. Furthermore, 

they show a spatial bias towards the novel structure in the old-token bias trials (M = -9.3, SE 

= 2.3, d = 0.44, t(90) = 4.19, p < .001, BF = 285) but not the new-token bias trials (M = -1.5, 

SE = 1.7, d = 0.09, t(90) = 0.89, p = .999, BF = 0.17). Participants with explicit knowledge (n 

= 22) show above chance performance for both the standard learning trials (M = 84.5, SE = 

4.0, d = 1.9, t(21) = 8.67, p < .001, BF = 6.1*105) and the spatial learning trials (M = 81.1, SE 

= 4.6, d = 1.5, t(21) = 6.81, p < .001, BF = 1.8*104). Therefore, participants with explicit 

knowledge could identify which shapes co-occurred and in what arrangement they co-occurred. 
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Furthermore, they also show a spatial bias towards the novel structure in the old-token bias 

trials (M = -18.9, SE = 4.8, d = 0.84, t(21) = 3.93 p = .003, BF = 45.3) but not the new-token 

bias trials (M = 1.1, SE = 4.2, d = 0.06, t(21) = 0.27 p = .999, BF = 0.23). 

These findings are surprising as for participants with explicit knowledge, the direction 

of bias is opposite to that observed in Experiment 1a. While in Experiment 1a, they showed 

generalization of structure, here they showed a structural novelty effect. However, this might 

be explained by a weakness of experimental design, combined with the high level of learning 

shown by explicit participants in this experiment. The weakness in experimental design for the 

old-token bias trials is that the foil pairs combine shapes from two different real pairs, keeping 

the position of shapes within the pair where possible. To create a horizontal foil pair, the left 

shape of one pair is combined with the right shape of another pair, keeping those relative posi-

tions. Therefore, participants with strong knowledge of the real pairs' spatial arrangement know 

that the respective shapes of the foil pair should never appear in that relation, as this violates 

their pair knowledge. For example, assuming horizontal pairs AB and CD, shape C cannot be 

to the left of shape B, as shape A always appeared there during the training. Therefore, the foil 

pair CB violates the knowledge of participants. This is not the case for the rotated version of 

the foil pair, as there is no strong expectation about what should be above or below A and B. 

This means that if participants have a strong understanding of the structure of the pairs, as the 

explicit participants demonstrate with their high standard learning and spatial learning perfor-

mance, they have a choice between a foil pair violating their knowledge and a foil pair not 

violating their knowledge. Choosing the option that does not violate their knowledge would 

lead to the effect observed in the old-token bias trials. 

On the standard learning trials, we see higher performance in Experiment 2a than in 

Experiment 1a  for participants with explicit knowledge (d = 0.70, t(53.6) = 2.74, p = .025, BF 

= 3.7) but not with implicit knowledge (d = 0.06, t(221.83) = 0.53 p = .594, BF = 0.16). This 
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suggests that the explicit participants were subject to retroactive interference: learning pairs in 

the second phase of Experiment 1a interfered with remembering the previously learned pairs. 

 

Discussion 

The results showed the same structural bias for implicit participants that was also found in the 

transfer setup of Experiment 1a. The results are unclear for explicit participants based on a flaw 

in the experimental design. Surprisingly, implicit participants show no knowledge of the ori-

entation of specific learned pairs, although it evidently affects making decisions about foil 

pairs. One potential explanation is that the structural novelty effect and the knowledge of pair 

orientation point in opposite directions, which, assuming similar magnitudes for both, would 

predict the observed chance performance. The idea here is that the structural novelty effect 

demonstrated with the old-token bias trials and before in Experiments 1a and 1b, by definition, 

points in the opposite direction than the orientation of the previously learned pairs. This would 

suggest that the participants with implicit knowledge are faced with conflicting information in 

applying their weak knowledge to the spatial learning trials, which could explain a chance 

performance by these two effects canceling out. This interpretation can be tested by removing 

the structural bias, as we would predict that participants with implicit knowledge then perform 

above chance for the spatial learning trials and, therefore, demonstrate learning of the pair ori-

entations. This was realized in Experiment 2b. 
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Figure 2.5 Experiments 2a and 2b Results. Top Panel Performance in Experiment 2a. Bottom 

Panel Performance in Experiment 2b. Results of 2AFC familiarity tests in Experiment 1a. Test 

trials are grouped along the x-axis according to test type. Standard learning trials signify a 

decision between a real and a foil pair, identical to the test trials in Experiments 1a-c. Spatial 

learning trials use a real pair, once in its correct orientation and once rotated by 90 degrees. 

Old-token bias trials use a foil pair, once in horizontal and once in vertical orientation. New-

token bias trials use a pair of shapes that were not used in the training, once in horizontal and 

once in vertical orientation. For the two types of bias trials, there is no correct answer, and 

performance is expressed as bias for novel or same structure (Experiment 2a) or bias for hori-

zontal or vertical structure (Experiment 2b). For other trial types, the y-axis represents the pro-

portion of correct responses in the 2AFC test trials. Bars represent the standard error. Color 

coding indicates implicit and explicit subgroups of the participants. The horizontal dotted line 

at 50% denotes chance performance. The asterisks above bars denote significance levels from 

chance, while above lines they denote significance levels comparing two conditions. The leg-

end of significance levels is shown in the lower left corner.  

 

C
E

U
eT

D
C

ol
le

ct
io

n



37 

2.3.2 Experiment 2b: Measuring a priori Structural Biases 

Experiment 2b (see Figure 2.4) has been designed to answer two questions. First, do explicit 

and implicit participants have a priori biases about orientation? I.e., do they preferably choose 

horizontal or vertical pairs if the learning phase does not bias them in any direction? Second, 

do implicit participants actually have usable knowledge of the pair orientation, which was only 

masked by the structural novelty effect in Experiment 2a? In order to test these two questions, 

Experiment 2b follows the same setup as Experiment 2a, but it uses both horizontal and vertical 

pairs in the training, therefore eliminating the induction of a structural bias. This setup is very 

close to that of classical spatial VSL studies (Fiser & Aslin, 2001) while including a larger array 

of types of test trials to allow for a deeper understanding of the underlying representations. 

 

Participants 

138 participants (63 female, mean age = 27.3, SD = 8.3) were recruited via prolific.co. All 

participants had normal or corrected-to-normal vision. The sample size was chosen to approx-

imately match the one of Experiment 2a. The hourly compensation was £ 6.3. The study was 

approved by the Psychological Research Ethics Board of the Central European University, and 

all participants provided informed consent. 

 

Materials 

The materials were similar to Experiment 2a; however, the shapes were grouped into three 

horizontal and three vertical pairs for all participants (instead of 6 horizontal or 6 vertical pairs), 

therefore eliminating the bias in orientation. 

 

Procedure 

The procedure was identical to that of experiment 2a. 
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Results 

The same exclusion criteria as in Experiment 1a were used. This led to 7 exclusions for failed 

attention checks and 2 exclusions for response bias. This left us with 129 participants after 

exclusions. Participants were categorized as explicit or implicit in the same way as in Experi-

ment 1a. This led to 15 participants being categorized as explicit and 114 as implicit. 

The results (Figure 2.5 bottom panel) show that participants with implicit knowledge 

(n = 114) perform above chance for both the standard learning trials (M = 54.6, SE = 1.2, d = 

0.35, t(113) = 3.74 p = .002, BF = 65.2) and the spatial learning trials (M = 57.3, SE = 1.9, d 

= 0.37, t(113) = 3.91, p = .001, BF = 115). For participants with explicit knowledge (n = 15) 

we observe that while they perform above chance for standard learning trials (M = 67.0, SE = 

4.1, d = 1.06, t(14) = 4.11, p = .006, BF = 36.8), they perform significantly worse on those 

trials in experiment 2b as compared to experiment 2b (d = 0.99, t(32.9) = 3.04, p = .019, BF = 

7.8). Both participants with explicit and participants with implicit knowledge show a bias to-

ward choosing horizontal over vertical options in the old-token bias trials (explicit: M = 14.4, 

SE = 5.4, d = 0.70, t(14) = 2.69, p = .070, BF = 3.5; implicit: M = 6.6, SE = 2.0, d = 0.31, t(113) 

= 3.26, p = .007, BF = 14.7) but not the new-token bias trials (explicit: M = 4.2, SE = 5.3, d = 

0.20, t(14) = .79, p = .442, BF = 0.34; implicit: M = 2.1, SE = 1.6, d = 0.12, t(113) = 1.29, p = 

.401, BF = 0.23). 

 

Discussion 

The results show that both explicit and implicit participants have an a priori bias for horizontal 

structures. This highlights how we cannot assume our participants to be blank slates even when 

using abstract, artificial, and seemingly arbitrary stimuli and associations. The results further 

show that implicit participants have usable knowledge about pair orientation, in line with the 

interpretation of the results of Experiment 2a given above.  
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The finding that participants with explicit knowledge perform worse in this experiment 

than in Experiment 2a might suggest a generalization effect happening within the learning 

phase in Experiment 2a. This constitutes an even faster generalization than the one reported 

between learning phases in Experiment 1a. This is the case as the only difference between 

Experiments 2a and 2b is the presence of only one type of structure in Experiment 2a. There-

fore, the better performance likely results from participants immediately re-applying this struc-

ture after learning one or a few pairs following that structure. 

 

2.4 General Discussion 

Summarizing this chapter, I presented a series of five experiments utilizing a transfer learning 

version of the classical statistical learning paradigm to show that participants with explicit 

knowledge can abstract and generalize the types of structure underlying a statistical learning 

task immediately, while participants with implicit knowledge show a structural novelty effect 

in immediate transfer and application of knowledge. These findings connect in interesting ways 

to findings within and outside the statistical learning literature but also leave several open ques-

tions. 

The combined results of Experiments 2a and 2b highlight how participants use acquired 

and existing biases in a flexible fashion. The preference for horizontality found in Experiment 

2b in the absence of any bias in the input cannot be explained by specific features of this ex-

periment as compared to others. This suggests that this is a pre-existing bias also present in 

participants in the other experiments. However, in those experiments, it was overshadowed by 

features of the input (use of only horizontal or vertical pairs) and, therefore, not applied to the 

test trials. This form of flexible use of biases and the idea of pre-existing biases will be reen-

countered in Chapters 5 and 4, respectively. Interestingly, a bias for horizontal orientations has 

previously been reported in other domains, such as visual processing (Lim & Sinnett, 2012), 
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face perception (Balas et al., 2015; Dakin & Watt, 2009), and direction of saccades as captured 

with eye-tracking (Foulsham et al., 2008; Gilchrist & Harvey, 2006; Tatler & Vincent, 2008; 

Van Renswoude et al., 2016). 

There has been a debate in the statistical learning literature on whether or not explicit 

task instructions lead to different outcomes for SL. Some authors argued that explicit instruc-

tions do not matter (Arciuli et al., 2014) while others argued that it can matter based on context 

factors (Bertels et al., 2015). In general, this discussion focused on quantitative performance 

improvements. Contrasting the results of the implicit participants of Experiment 1a with the 

results of Experiment 1c shows a critical effect of explicit instructions on both quantitative and 

qualitative behavior. Explicit instructions lead to high learning performance and generalization, 

compared to low learning performance and a structural novelty effect. The comparison of the 

results of the explicit participants of Experiment 1a with the results of Experiment 1c further-

more shows that the effects of explicit instructions are very similar to the effect of participants 

achieving explicitness of knowledge on their own. 

An interesting difference between the performance of participants with explicit and im-

plicit knowledge is that the direct comparison between Experiments 1a and 2a shows retroac-

tive interference (Dewar et al., 2007; Wixted, 2004) only for participants with explicit 

knowledge. That is, for explicit participants, learning the pairs in the second learning phase of 

Experiment 1a interfered with remembering the pairs of the first learning phase. These two 

experiments are identical in the first learning phase, and the test items used for both of them 

can, therefore, be directly compared. Interestingly, this retroactive interference for participants 

with explicit knowledge is in contrast to a potential proactive interference for participants with 

implicit knowledge discussed in the final paragraph of this chapter. 

Contrasting the findings of participants with explicit and implicit knowledge over all 

experiments presented in this chapter demonstrates critical differences between them, both 
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quantitative and qualitative. In contrast to participants with implicit knowledge, participants 

with explicit knowledge show higher learning performance, generalization in structural trans-

fer, and retroactive interference. This highlights how problematic it can be to ignore explicit-

ness as a covariate, as many studies in statistical learning do. For mere quantitative differences, 

this can be problematic as averaging over implicit and explicit participants can lead to artificial 

group means which are not representative of any of the constituting subgroups. This is even 

more problematic for qualitative differences, as the current example demonstrates. In this case, 

averaging over explicit and implicit participants would have masked both the generalization 

and structural novelty effects found within this group. Consistently doing this split of the sam-

ple into explicit and implicit learners might, however, be costly for statistical learning research, 

as it means collecting data from enough participants to be able to make inferences for and 

between two subgroups and dealing with smaller effects than previously estimated in the liter-

ature (for the implicit subgroup). However, the alternative is making inferences based on arti-

ficial group means, which do not describe the actually existing subgroups. Interestingly, the 

significantly different rates of explicitness found between Experiment 1a, using horizontal and 

vertical pairs, and Experiment 1c, using diagonal pairs, suggests that this issue will differen-

tially affect varying experimental setups. 

A critical question about the results presented in this chapter is how the structural nov-

elty effect observed for participants with implicit knowledge relates to the generalization be-

havior observed for participants with explicit knowledge. In the simplest sense, they can be 

seen as different cases of the same phenomenon, the transfer of structural properties from one 

learning phase to another, just with inverted signs. However, are they built on the same type of 

underlying representation used in different ways or on fundamentally different representations? 

I would argue that the simplest explanation of the behavior of participants with explicit 

knowledge is the formation of abstracted knowledge based on the representational overlap of 
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the learned pairs, which consists of their shared orientation. This amounts to a factorized rep-

resentation, representing the orientation (vertical or horizontal) in its own right, which is later 

applied in the interpretation of novel input, leading to a bias for the familiar structure, i.e., 

generalization. In principle, the behavior of participants with implicit knowledge could be ex-

plained in the same way, with some additional explanation of why they invert the direction of 

effect in applying their abstract knowledge to new input. However, a more straightforward 

explanation for the results of the implicit group might be a structure-level interference effect. 

In this view, implicit participants in my experiment could not utilize the representational over-

lap for abstraction and, therefore, do not represent the shared pair orientation as an abstract 

feature of the input. New incoming pairs of the same structure would reactivate the same rep-

resentational space containing the representation of the previously learned pairs by sheer sim-

ilarity. This simultaneous activation of old and new pairs could lead to proactive interference 

(Kliegl & Bäuml, 2020), hindering the learning of the new pairs of the same orientation (Ex-

periment 1a+b) and making them less appealing choices in direct utilization to test trials (Ex-

periment 2a). New pairs with a different structure would not be subject to this same interfer-

ence. This would lead to the pattern of behavior observed in the experiments presented in this 

chapter. Proactive interference based on similarity is well established in learning (Kliegl & 

Bäuml, 2020), therefore making my interpretation highly plausible in explaining the transfer 

learning results of Experiments 1a and 1b. However, this is more speculative for the decision-

making required in direct utilization to test items of Experiment 2a, and further studies would 

be required to support this idea. 

If my interpretation of the transfer learning results in Experiments 1a and 1b is correct, 

a natural next question is: are there circumstances where participants with implicit knowledge 

can also abstract from the representational overlap of the learned pairs and, therefore, show a 

generalization behavior? I.e., are there circumstances where participants with implicit 
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knowledge show the same pattern of behavior as the participants with explicit knowledge did 

in the current chapter? In Chapter 3, consolidation - a phase of offline processing - is investi-

gated as a candidate for this. Using three experiments building on the paradigm developed in 

the current chapter, I show that asleep but not awake consolidation leads participants with im-

plicit knowledge to generalize the initially learned structure to novel input. 
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CHAPTER 3 

 

Consolidation and Generalization in Visual Statistical Learning 

 

The study presented in this chapter builds on the unsupervised transfer learning paradigm in-

troduced in the previous chapter and adopts it to study the influence of consolidation - phases 

of offline processing - on implicit structural learning and transfer. I present a series of three 

experiments that demonstrate that after asleep, but not awake, consolidation participants with 

implicit knowledge are able to generalize structural knowledge. It furthermore confirms that 

this effect is specific to sleep and cannot be explained by a time-of-day effect. 

 

3.1 Consolidation, Abstraction, and Statistical Learning 

An influential view on memory in Psychology and Neuroscience distinguishes between three 

distinct phases: encoding, storage, and retrieval (Melton, 1963). While encoding and retrieval 

encompass how a memory is initially formed and later used again, storage describes everything 

that happens in between. This is not akin to passive storage of information on a computer hard 

drive but is an active phase in which memories are transformed by a process called memory 

consolidation during offline phases while we are awake or asleep (Squire et al., 2015). Mem-

ories can get stronger or weaker, and crucially, they can undergo qualitative changes such as 

abstraction. As mentioned in previous chapters, the key feature of abstraction is the extraction 

of commonalities between several instances (Blackburn, 2008). This role of memory consoli-

dation as an enabler of abstraction and generalization is the focus of the current study. As a 

point on terminology, this reorganization function is often called systems consolidation, in con-

trast to the shorter-lived processes of synaptic consolidation. For this dissertation, the focus is 

on the system-level reorganization of memory and the resulting qualitative changes in memory-
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guided behavior. Therefore, the term consolidation will mainly be used to refer to systems con-

solidation. The next subchapters will give an overview of previous research on consolidation 

and abstraction (3.1.1), consolidation and statistical learning (3.1.2), and consolidation and ex-

plicitness of knowledge (3.1.3). 

 

3.1.1 Consolidation and Abstraction 

An instrumental role of consolidation processes in abstraction and generalization has previ-

ously been demonstrated for both artificial (Ellis et al., 2021; Wittkuhn et al., 2021) and bio-

logical systems (Chambers, 2017; Diekelmann & Born, 2010; Klinzing et al., 2019; Lerner & 

Gluck, 2019; Lewis & Durrant, 2011; Rasch & Born, 2013). These studies used computational 

(Ellis et al., 2021; G. E. Hinton et al., 1995; McClelland et al., 1995; Singh et al., 2022) and 

empirical approaches to demonstrate the major effect of consolidation under sleep-based 

(Djonlagic et al., 2009; Lutz et al., 2017, 2018; Schapiro, McDevitt, et al., 2017; Sweegers et 

al., 2014) and awake conditions (Hennies et al., 2014). 

An influential theoretical account and computational model of systems consolidation is 

the complementary learning systems (CLS) framework (McClelland et al., 1995; O’Reilly et 

al., 2014). Based on neural network models and findings about the neural correlates of memo-

ries in the brain, this framework suggests that human memory function is based on an interac-

tion of two complementary memory systems. The first one, the hippocampus, is fast learning, 

realized by high sparsity and plasticity of neural connections within the system. The second, 

situated throughout the neocortex, is slower learning, realized by overlapping representations 

and lower plasticity within the system. According to this framework, human memory perfor-

mance is based on an interaction of the two systems. The fast-learning hippocampus builds 

episodic memories online, and later "teaches" the slow-learning neocortex during offline 

phases by reactivating its own representations, leading to corresponding activity in the 
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neocortex. This interaction does not consist of simply moving memories from one storage site 

to another but serves two essential interrelated functions. First, the necessity of two learning 

systems with different properties became apparent in early connectionist studies of knowledge 

representation in neural network models, which showed catastrophic interference. This means 

that new information fed to the system interfered with previously stored information, leading 

to forgetting what had already been learned. The two complementary learning systems help 

with this, as the first system is fast enough to quickly acquire regularities, while the second 

system is slow enough to incorporate new information without wiping out old knowledge. The 

second function of the interaction of the systems in CLS is abstraction. In this view, the neo-

cortical learning system is slow and only reliably stores information after multiple repetitions. 

As different but similar memories are fed from the hippocampus to the neocortex, the overlap 

between the different memories is activated in the neocortex for every one of them. In contrast, 

the differences between them, the unique properties of episodes, are only activated for the spe-

cific instances. Therefore, the commonality is represented stronger and longer lasting, leading 

effectively to an abstraction of the shared properties of several memories. The properties of the 

two learning systems have been linked to episodic and semantic memory systems, respectively. 

This basic version of the CLS framework, as proposed several decades ago, has under-

gone revisions and criticism. A selection of these is discussed in this paragraph. Evidence has 

accumulated that a simple one-to-one mapping of memory systems and brain regions is an 

oversimplification not supported by empirical findings on functional neuroanatomy (Sherman 

et al., 2024). It has also been suggested that empirically demonstrated hippocampal functions 

going beyond episodic memory and extending to statistical learning (Covington et al., 2018; 

Schapiro et al., 2014, 2012, 2016) can be explained by the presence of additional complemen-

tary learning systems within the hippocampus (Schapiro, Turk-Browne, et al., 2017). Further-

more, it was suggested that the reactivation of memories for consolidation is a guided process 
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influenced by factors such as strength and depth of initial encoding (Denis et al., 2020; Schapiro 

et al., 2018), learned rules and schemas (Y. Liu et al., 2019; Preston & Eichenbaum, 2013), 

utility (Y. Liu et al., 2021; Mattar & Daw, 2018), and the potential for generalization (Sun et 

al., 2023). 

Finally, research on sleep's role in systems consolidation has been connected to accu-

mulating research on sleep stages, suggesting different roles for slow wave sleep (SWS) and 

rapid eye movement (REM) sleep in the reorganization of memory through consolidation 

(Diekelmann & Born, 2010; Gilboa & Marlatte, 2017; Kumaran & McClelland, 2012; O’Reilly 

et al., 2014; Rasch & Born, 2013; Schapiro, McDevitt, et al., 2017; Singh et al., 2022; Squire 

et al., 2015; Witkowski et al., 2020).  

The core idea of the CLS framework of enabling abstraction and generalization based 

on the representational overlap of reactivated memories has been echoed in several different 

conceptualization of the qualitative effects of consolidation on memory (Chambers, 2017; 

Diekelmann & Born, 2010; Klinzing et al., 2019; Rasch & Born, 2013; Singh et al., 2022; Sun 

et al., 2023; Sweegers et al., 2014; Tse et al., 2007; Winocur et al., 2010). For the purpose of 

this dissertation, it is precisely this feature that is most important as it is highly relevant for the 

interpretation of the experiments discussed in the current chapter. 

 

3.1.2 Consolidation and Statistical Learning 

The findings on the influence of consolidation on statistical learning are mixed and divergent, 

showing clear effects of sleep on performance for some setups (Durrant et al., 2013, 2016, 

2011) and no or very limited effects for others (Arciuli & Simpson, 2012; Hallgató et al., 2013; 

Kim et al., 2009; McDevitt et al., 2022; Nemeth et al., 2010; Quentin et al., 2021; Simor et al., 

2019). 
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For auditory statistical learning using probabilistic sequences, it was shown that con-

solidation over long (8 hours) and short (90 minutes) phases of sleep led to higher performance, 

as compared to awake consolidation over the same period (Lewis & Durrant, 2011). Further-

more, longer delays (24 hours) lead to stronger performance improvement than shorter delays 

(30 minutes) (Durrant et al., 2013). The cross-modal transfer of auditory statistical knowledge 

to visual sequences was found to be contingent on a long delay (24 hours) (Durrant et al., 2016). 

In all of these studies, the amount of slow-wave sleep predicted improved performance or 

transfer. 

For the alternating serial reaction time (ASRT) task, measuring simultaneously statis-

tical learning of simple (adjacent) and complex (non-adjacent) regularities, results are more 

complicated. It was shown that while statistical learning of adjacent regularities happens fast 

and then plateaus, not being altered by a period of awake or asleep consolidation (Hallgató et 

al., 2013; Nemeth et al., 2010), learning of non-adjacent regularities, is slower, and more grad-

ual, and further increases during consolidation (Quentin et al., 2021; Simor et al., 2019). 

For temporal VSL, it was shown that test performance is the same directly after the 

familiarization with the stimuli or after delays of 30 minutes, 1 hour, 2 hours, 4 hours (Arciuli 

& Simpson, 2012), or 24 hours (Kim et al., 2009). This suggests that temporal VSL is stable 

and not dependent on awake or asleep consolidation. McDevitt et al. (2022) were the first to 

study the effect of sleep on spatial VSL. The results showed that in a standard condition, sleep 

did not benefit spatial VSL, as compared to awake consolidation. When interference was pre-

sent, in the form of two successive stimuli sets, learning was found in a REM sleep and an 

active-wake group but not in a non-REM sleep and a quiet-wake group. This suggests that 

consolidation phases have influences on spatial VSL, although their interpretation is not 

straightforward. It is not either sleep or awake consolidation that improves learning; instead, 

the details of the consolidation phase matter for both cases. 
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All of the studies discussed so far focused on the effect of consolidation on learning 

specific (simple or complex) item-item associations. The study presented in the current chapter 

goes beyond this by investigating how consolidation influences the abstraction from and gen-

eralization of such specific item-item associations. In my case, the generalization is the struc-

tural transfer of what has been abstracted to novel input. Furthermore, most previous studies 

on consolidation and statistical learning did not consider the actual state of acquired knowledge 

and simply assumed implicitness of knowledge based on the properties of the used statistical 

learning paradigms. However, one study did consider the quality of knowledge and found that 

while implicit representations are strengthened during a 24-hour consolidation period, explicit 

representations are decaying (H. Liu et al., 2023). This finding stresses the importance of meas-

uring the state of participants' knowledge in statistical learning research. This was already done 

in the previous chapter on statistical and structure learning (Chapter 2) and will again be a 

major topic for the analysis in the current chapter. Overall, the current investigation goes be-

yond previous work by systematically investigating the influence of sleep and awake consoli-

dation on the abstraction and generalization of the structure of learned items for both explicit 

and implicit knowledge. 

 

3.1.3 Consolidation and Explicitness 

Consolidation has been previously linked to the explicitness of knowledge. It was demonstrated 

that knowledge that was represented implicitly after initial encoding can become explicit after 

sleep (Fischer et al., 2006; Wagner et al., 2004; Zander et al., 2017). Furthermore, it was 

demonstrated for different domains that implicit and explicit representations can be differen-

tially influenced by sleep (Lerner & Gluck, 2019; H. Liu et al., 2023; Robertson et al., 2004). 

These findings further support the notion that tracking the explicitness of representations in the 

current study is highly relevant for reliable and meaningful analysis. 

C
E

U
eT

D
C

ol
le

ct
io

n



50 

3.2 Implicit Generalization Through Consolidation 

3.2.1 Experiment 3a: Sleep Enables Generalization of Implicit Knowledge 

While the previous chapter investigated how unsupervised learning of structural knowledge 

can be immediately applied to future learning or direct testing, the current chapter focuses on 

how this is influenced by intermediate phases of offline processing; i.e. consolidation. For this 

purpose, the experiments in this chapter build on the new unsupervised transfer learning para-

digm introduced in the previous chapter (see Figure 3.1). The key idea there was that in a first 

training phase, participants are exposed to visual scenes created from combinations of fixed 

shape pairs with a single shared underlying structure: horizontal or vertical orientation. Fol-

lowing this, in a second training phase, they are exposed to new scenes made from a set of new 

shapes, which are grouped in pairs of both underlying structures: horizontal and vertical orien-

tation. While in the previous chapter, this setup was used with a minimal break between the 

two learning phases of only two minutes, the current chapter focuses on how the duration and 

state of consciousness between the two learning phases influence learning and transfer of 

knowledge. Experiment 3a directly tests the effect of sleep on unsupervised structural transfer 

by introducing a 12-hour period during the night between the two learning phases. As with 

Experiment 1a in the previous chapter, the central question of interest here is not specific quan-

titative levels of learning but how first learning patterns of one type of structure influences 

subsequent learning of patterns of the same and novel structures and how the explicitness of 

knowledge moderates this. Based on the literature discussed in 3.1.1, the hypothesis here is that 

consolidation during sleep will enable participants with implicit knowledge to abstract the 

shared structure of multiple learned pairs, which can then, in turn, be generalized to novel input. 

This would demonstrate for unsupervised implicit learning, something previously shown only 

for more explicit learning under guidance (supervised and reinforcement learning). 
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Figure 3.1 Statistical Learning Transfer Paradigm - 2 Training Phase 1 The first training 

phase follows the classical spatial VSL paradigm, presenting scenes made from shape pairs 

without segmentation cues. All colors are only for illustration; for participants, everything is 

black and white. For this learning phase, all pairs have the same orientation (horizontal or ver-

tical), counterbalanced between participants. Break The break after the first training phase 

varies between Experiments, as described in the figure. Training Phase 2 The second training 

phase consists of novel scenes made from novel shapes. In this phase, all participants see hor-

izontal and vertical pairs. 2AFC Test Trials In all 2AFC test trials, participants are presented 

with a real pair from the training phases and a foil pair made by combining shapes of two real 

pairs. They need to decide which of the two shape pairs seems more familiar. Debriefing After 

the experiment, participants answer a set of open questions which are used to assess whether 

they have explicit knowledge of the presence of pairs in the input. 

 

Participants 

259 participants (127 female, mean age = 25.6, SD = 8.5) were recruited via prolific.co. The 

hourly compensation was £ 6.3. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to match that of Experiment 1a. The study was approved by the Psy-

chological Research Ethics Board of the Central European University, and all participants pro-

vided informed consent. In order to ensure that participants had overnight sleep during the 

experiment as intended, several constraints and checks were implemented (see Appendix B). 

 

Materials 

The materials of the main part of the experiment were identical to Experiment 1a. Additionally, 

participants filled out the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989) and the 

Groningen Sleep Quality Scale (GSQS) (Meijman et al., 1988). 
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Procedure 

The procedure (see Figure 3.1) within the main tasks was identical to Experiment 1a. However, 

in this experiment, participants completed the first training phase in the evening at around 09:00 

p.m., followed by the GSGS and PSQI questionnaires. Twelve hours later in the morning at 

09:00 a.m., they completed the second training phase, followed by all the test trials, and finally, 

they completed the GSGS again. 

 

Results 

The same exclusion criteria as for Experiment 1a were used. This led to 18 exclusions for failed 

attention checks and two exclusions for response bias. For this experiment, I also employed 

exclusion criteria related to sleep quality. 47 participants were excluded because they reported 

bad sleep quality for the night before the experiment or the night of the experiment as measured 

by the Groningen Sleep Quality Scale (GSQS, score below 9). 31 participants were excluded 

because they reported a bad habitual sleep quality measured with the Pittsburgh Sleep Quality 

Index (PSQI, score below 10). 161 participants remained after exclusions. Participants were 

categorized as explicit or implicit as in Experiment 1a. This led to 21 participants being cate-

gorized as explicit and 140 as implicit. Bayes Factors for Bayesian t-tests (Rouder et al., 2009) 

for implicit participants in Experiments 3a, b, and c used an r-scale parameter of .5 instead of 

the default √2/2, reflecting a change in prior after Experiment 1a found small effects. 

The results (Figure 3.2) showed that participants with implicit knowledge (n = 140) 

performed above chance for pairs of the first training phase (M = 53.1, SE = 1.0, d = 0.27, 

t(139) = 3.24, p = .009, BF = 16.8) and for pairs of the same structure (M = 58.8, SE = 2.5, d 

= 0.30, t(139) = 3.51, p = .004, BF = 37.6) but not pairs of a novel structure (M = 46.8, SE = 

2.6, d = 0.11, t(139) = -1.24, p = .435, BF = 0.27) in the second training phase. The performance 

for same and novel structure pairs is significantly different (d = 0.24, t(139) = 2.82, p = .027, 
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BF = 5.4). Participants with explicit knowledge (n = 21) show the same pattern of results as 

they did in Experiment 1a, performing above chance for pairs of the first training phase (M = 

74.8, SE = 4.2, d = 1.3, t(20) = 5.9, p < .001, BF = 2,361) and for pairs of the same structure 

(M = 66.7, SE = 5.8, d = 0.63, t(20) = 2.87, p = .038, BF = 5.3) but not pairs of a novel structure 

(M = 51.2, SE = 5.8, d = 0.04, t(20) = 0.20, p = .841, BF = 0.23) in the second training phase. 

For explicit participants, the difference between pairs of the same and novel structure is not 

significant (d = 0.39, t(20) = 1.77, p = .272, BF = 0.86), but we see a strong positive correlation 

between learning in the first learning phase and learning pairs of the same structure in the 

second learning phase (r = .52, p = .015). Again, no significant correlation is observed between 

the first learning phase and novel structure pairs in the second phase (r = .27, p = .232). 

I conducted the same type of matched sample analysis as for Experiment 1a here (see Appendix 

C for details). As in Experiment 1a, the matched sample showed the same pattern as the full 

sample (see Figure 3.3). As a critical analysis, we can see that for the matched implicit sample, 

there is a significant difference between learning pairs of the same and of the novel structure 

(d = 0.98, t(20) = 4.51, p < .001, BF = 127), suggesting generalization of the structure. 

In Chapter 2, retroactive interference was shown for explicit participants, as they per-

formed worse on pair learning if there was a second training phase with novel stimuli between 

initial training and test (Experiments 1a vs. 2a). As an exploratory test of release of interference 

after consolidation, I compared the performance of explicit participants in the current Experi-

ment 3a with these experiments. While we see that the explicit participants performance for 

Experiment 3a (M = 74.8) is descriptively between the performance in Experiment 1a (M = 

67.9) and Experiment 2a (M = 84.5), it is not significantly different from either (Experiments 

3a vs 1a: d = 0.29, t(51.5) = 1.11, p < .270, BF = 0.43; Experiments 3a vs 2a: d = 0.51, t(40.7) 

= -1.67, p < .103, BF = 0.91). However, given the low sample sizes for explicit participants, 

this comparison was likely underpowered. 
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Figure 3.2 Experiments 3a-c Results. Results of 2AFC familiarity tests. Test trials are grouped 

along the x-axis according to which training phase they appeared in, and for the second training 

phase, according to whether they follow the same or a different structure (horizontal or vertical) 

than the pairs of phase 1. The y-axis represents the proportion of correct responses. Bars rep-

resent the standard error; color coding indicates implicit and explicit subgroups. The dotted 

line at 50% shows the chance level. 
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Figure 3.3 Experiments 3a-c Matched Sample Results. Results of 2AFC familiarity tests for 

the subsample of implicit participants found by matching to explicit participants' phase 1 per-

formance. Otherwise, the plots are as described in the legend of Figure 3.2. 
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Discussion 

We saw that in Experiment 3a, participants with implicit knowledge completely switched their 

behavior compared to the implicit participants in Experiment 1a and now behave as the explicit 

participants in Experiment 1a did. Therefore, the results of the current experiment demonstrate 

that consolidation during sleep can enable the abstraction and transfer of structural knowledge 

in unsupervised implicit learning. Matched sample analysis again demonstrated that this pattern 

of behavior is not moderated by the specific level of learning in the first training phase. How-

ever, the results of Experiment 3a alone are insufficient to demonstrate that the effect found is 

specific to sleep. Therefore, I conducted two further experiments that realize control conditions 

that are best practice in research on the effect of consolidation on learning (Németh et al., 

2023). 

 

3.3 Testing the Role of Sleep and Time-of-Day 

3.3.1 Experiment 3b: The Effect of Consolidation on Generalization is Sleep Specific 

Experiment 3b was designed to test whether the effect found in Experiment 3a is specific to 

sleep or is a general effect of consolidation. For this purpose, the 12-hour consolidation phase 

was moved to the daytime without any sleep occurring. Comparing the results of Experiments 

3a and 3b is, therefore, a direct experimental test of the effect of sleep on unsupervised implicit 

structural transfer. 

 

Participants 

275 participants (134 female, mean age = 28.9, SD = 9.8) were recruited via prolific.co. The 

hourly compensation was £ 6.3. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to match that of Experiment 1a. The study was approved by the Psy-

chological Research Ethics Board of the Central European University, and all participants 
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provided informed consent. In order to ensure that participants conducted the experiment dur-

ing the day and did not sleep during the consolidation phase, several constraints and checks 

were implemented (see Appendix B for details). 

 

Materials 

The materials were identical to those of Experiment 3a. 

 

Procedure 

The procedure (see Figure 3.1) was the same as Experiment 3a, with the difference that the first 

session took place in the morning at around 09:00 a.m. and the second in the evening at 09:00 

p.m. As there was no night of sleep between the first and second sessions, participants filled 

out the GSQS only once in this experiment. 

 

Results 

The same exclusion criteria as Experiment 3a were used. This led to 29 exclusions for failed 

attention checks and three exclusions for response bias. 28 participants were excluded because 

they reported bad sleep quality for the night before the experiment as measured by the Gro-

ningen Sleep Quality Scale (GSQS, score below 9). 28 participants were excluded because they 

reported a bad habitual sleep quality measured with the Pittsburgh Sleep Quality Index (PSQI, 

score below 10). Additionally, 17 participants in this experiment were excluded as they reported 

sleeping during the day. This left us with 170 participants after exclusions. Participants were 

categorized as explicit or implicit in the same way as in Experiment 1a. This led to 20 partici-

pants being categorized as explicit and 150 as implicit. Bayes Factors from Bayesian t-tests for 

implicit participants reported for Experiments 3a, 3b, and 3c used an r-scale parameter of .5 

instead of the default √2/2, reflecting that Experiment 1a found small effect sizes for this group. 
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The results (Figure 3.2) showed that participants with implicit knowledge (n = 150) that did 

not sleep during the consolidation phase performed above chance for pairs of the first training 

phase (M = 53.9, SE = 0.9, d = 0.36, t(149) = 4.46, p < .001, BF = 1,020), but not for pairs of 

the same structure (M = 51.8, SE = 2.3, d = 0.07, t(149) = 0.80, p = .999, BF = 0.17) or pairs 

of a novel structure (M = 52.8, SE = 2.6, d = 0.09, t(149) = 1.08, p = .999, BF = 0.22) in the 

second training phase. Participants with explicit knowledge (n = 20) again perform as they did 

in Experiment 1a, performing above chance for pairs of the first training phase (M = 74.4, SE 

= 4.3, d = 1.27, t(19) = 5.67, p < .001, BF = 1,281) and for pairs of the same structure (M = 

70.0, SE = 6.2, d = 0.72, t(19) = 3.24, p = .026, BF = 10.4) but not pairs of a novel structure 

(M = 62.5, SE = 7.4, d = 0.38, t(19) = 1.70, p = .530, BF = 0.78) in the second training phase. 

As in Experiment 1a, for explicit participants, the difference between pairs of the same and 

novel structure is not significant (d = 0.19, t(19) = 0.86, p = .999, BF = 0.32), but again we do 

see a strong positive correlation between learning in the first learning phase and learning pairs 

of the same structure in the second learning phase (r = .56, p = .010). Again, no significant 

correlation is observed between learning in the first learning phase and learning pairs of the 

novel structure in the second learning phase (r = .42, p = .065). 

I conducted the same type of matched sample analysis as for experiments 1a and 3a 

here (see Appendix C for details). As previously, the matched sample showed a pattern similar 

to that of the full sample (Figure 3.3). Critically, we can see that for the matched implicit sam-

ple, there is no significant difference between learning pairs of the same and of the novel struc-

ture (d = 0.29, t(19) = -1.29, p = .214, BF = 0.59), suggesting no generalization of the structure. 

 

Discussion 

The results of Experiment 3b show that in the absence of sleep, participants with implicit 

knowledge do not generalize structural knowledge. This supports the idea that the type of 
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offline processing necessary for the implicit abstraction of the shared structure of multiple 

learned patterns does not occur during all kinds of offline phases but is specific to sleep. 

 

3.3.2 Experiment 3c: The Results of Experiments 3a+b Are Not Based On Time-of-Day 

The results of Experiment 3b suggest that the effect found in Experiment 3a was specific to 

sleep. However, there is still an alternative explanation. It was previously suggested that gen-

eralization is more easily achieved in the morning than in the evening (Tandoc et al., 2021). 

This suggests that a simple comparison between an AM-PM condition and a PM-AM condition 

is insufficient to show the effect of sleep on generalization as it confounds the effect of sleep 

with a possible effect of time of day. To test for a possible time-of-day effect, Experiment 3c 

uses the same setup as the previous experiments but introduces a PM-PM condition, i.e., a 24-

hour consolidation phase from one evening to the next. This means that participants in this 

condition sleep after the first learning phase, as participants in Experiment 3a, but they need to 

generalize their knowledge not in the morning but in the evening, as participants in Experiment 

3c. The key idea here is that replicating the findings of the AM-PM condition in the PM-PM 

condition strongly supports an actual effect of sleep and against a time-of-day effect. 

 

Participants 

275 participants (129 female, mean age = 27.9, SD = 8.9) were recruited via prolific.co. The 

hourly compensation was £ 6.3. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to match that of Experiment 1a. The study was approved by the Psy-

chological Research Ethics Board of the Central European University, and all participants pro-

vided informed consent. In order to ensure that participants had overnight sleep during the 

experiment as intended, several constraints and checks were implemented (see Appendix B for 

details). 
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Materials 

The materials were identical to Experiment 3a. 

 

Procedure 

The procedure (see Figure 3.1) was identical to Experiment 3a. However, in this experiment, 

participants completed the first session in the evening at around 09:00 p.m. and the second 

session 24 hours later again in the evening at 09:00 p.m. 

 

Results 

The same exclusion criteria as Experiment 3a were used. This led to 17 exclusions for failed 

attention checks and five exclusions for response bias. 51 participants were excluded because 

they reported bad sleep quality for the night before the experiment or the night of the experi-

ment as measured by the Groningen Sleep Quality Scale (GSQS, score below 9). Additionally, 

33 participants were excluded because they reported a bad habitual sleep quality measured with 

the Pittsburgh Sleep Quality Index (PSQI, score below 10). This left us with 169 participants 

after exclusions. Participants were categorized as explicit or implicit in the same way as in 

Experiment 1a. This led to 145 participants being categorized as implicit, 23 categorized as 

explicit, and one being excluded for being categorized as fully explicit (having explicit 

knowledge about the predominant pair orientation). Bayes Factors from Bayesian t-tests for 

implicit participants reported for Experiments 3a, 3b, and 3c used an r-scale parameter of .5 

instead of the default √2/2, reflecting that Experiment 1a found small effect sizes for this group. 

The results (Figure 3.2) showed that participants with implicit knowledge (n = 145) performed 

above chance for pairs of the first training phase (M = 53.2, SE = 0.8, d = 0.34, t(144) = 4.09, 

p = .001, BF = 260) and for pairs of the same structure (M = 59.1, SE = 2.4, d = 0.31, t(144) = 

3.78, p = .001, BF = 89.4) but not pairs of a novel structure (M = 48.1, SE = 2.6, d = 0.06, 
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t(144) = -.74, p = .459, BF = 0.17) in the second training phase. The performance for pairs of 

the same and novel structure was significantly different (Mdiff = 11.04, d = 0.23, t(144) = 2.75, 

p = .021, BF = 4.4). Participants with explicit knowledge (n = 23) show the same pattern of 

results as they did in Experiment 1a, performing above chance for pairs of the first training 

phase (M = 71.4, SE = 4.6, d = 0.9, t(23) = 4.6, p = .001, BF = 217), for pairs of the same 

structure (M = 80.4, SE = 6.3, d = 1.01, t(23) = 4.85, p = .001, BF = 347), and pairs of a novel 

structure (M = 69.6, SE = 5.9, d = 0.69, t(23) = 3.33, p = .012, BF = 13.6) in the second training 

phase. As in Experiment 1a, for explicit participants, the difference between pairs of the same 

and novel structure is not significant (Mdiff = 10.78, d = 0.26, t(22) = 1.27, p = .437, BF = 0.44), 

but here we do not see a significant positive correlation between learning in the first learning 

phase and learning pairs of the same structure in the second learning phase (r = .109, p = .620). 

I conducted the same type of matched sample analysis as for Experiment 1a here (see 

Appendix C for details). As in Experiment 1a, the matched sample descriptively showed the 

same type of pattern as the full sample (Figure 3.3). However, the critical analysis of the dif-

ference between learning pairs of the same and of the novel structure for the matched implicit 

sample failed to reach significance (Mdiff = 8.66, d = 0.22, t(22) = 1.05, p = .304, BF = 0.46). 

To compare directly the effect of type of consolidation on implicit structure learning, I 

entered the data of participants with implicit knowledge from Experiments 1a, 3a, 3b, and 3c 

into a 4x2 ANOVA, with consolidation type (no consolidation, 12-h-sleep, 12-h-awake, and 

24-h-sleep consolidation) and structure type (same or novel structure) as factors. The obtained 

results showed the typical pattern of a cross-over interaction with no significant main effects 

(consolidation type: F(3, 623) = 0.18, p = .910, BF = 0.003, ηp
2 = .0009; structure type: F(1, 

623) = 1.52, p = .218, BF = 0.17, ηp
2 = .002) but a significant interaction (F(3, 623) = 7.43, p 

< .001, BF = 1979, ηp
2 = .03). Post-hoc tests revealed significant differences between the no-

consolidation group (Exp. 1a) and the two asleep-consolidation groups (Exp. 3a and 3c), where 
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the no-consolidation group showed stronger learning of novel structure (Exp. 1a vs. Exp. 3a: p 

= .004, BF = 44.3; Exp. 1a vs. Exp. 3c: p = .012; BF = 12.7), while the asleep-consolidation 

groups showed stronger learning of same structure pairs (Exp. 1a vs. Exp. 3a: p = .015, BF = 

8.8; Exp. 1a vs. Exp. 3c: p = .011; BF = 14.3). No other significant differences were found. 

As it has previously been reported that sleep can lead to explicitness of previously im-

plicit representations (Fischer et al., 2006; Wagner et al., 2004; Zander et al., 2017) I tested for 

differences in the proportion of participants with explicit knowledge across experiments. Χ2-

tests showed no significant differences in the proportion of explicitness between the conditions 

with no consolidation (Experiment 1a) and the condition with 12-hours consolidation including 

sleep (Experiment 3a: Χ2(1, 392) = 0.054, p = .816) or the condition with 24-hours consolida-

tion including sleep (Experiment 3c: Χ2(1, 387) = 0.166, p = .683). 

In Experiments 1a, 1b, 3a, 3b, and 3c participants with explicit knowledge showed the 

same descriptive pattern of higher performance for same over novel structure pairs. However, 

this difference failed to reach significance within these experiments. We, therefore, analyzed 

them again collapsed over all these experiments. The results showed an overall higher perfor-

mance for the same structure pairs than novel structure pairs for explicit participants (d = 0.34, 

t(233.99) = 2.56, p = .011, BF = 3.12). Furthermore, over all experiments, explicit participants' 

performance for Phase 1 only significantly correlated with the learning of same structure pairs 

(r = .41, p < .001, BF = 4,460), not novel structure pairs (r = .14, p = .137, BF = 0.62). 

 

Discussion 

The results of Experiment 3c replicate the results found in Experiment 3a and, therefore, 

demonstrate that the implicit transfer of structural knowledge was in fact specific to sleep. This 

is further confirmed by jointly analyzing the data of experiments with all different consolida-

tion conditions (Experiments 1a, 3a, 3b, 3c). 
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3.4 General Discussion 

The research presented in this chapter studied the influence of consolidation on implicit struc-

tural learning and transfer by adopting the unsupervised transfer learning paradigm introduced 

in the previous chapter. Over three experiments, I found that after asleep, but not awake, con-

solidation participants with implicit knowledge are able to generalize structural knowledge. 

Following best practice in consolidation research, I confirmed that this effect is specific to sleep 

and cannot be explained by a time-of-day effect. 

 These results are in line with results previously reported in the literature showing ab-

straction based on consolidation (3.1.1) but extend them to the domain of unsupervised learning 

and implicit representations. This suggests that the same underlying mechanism, or at least the 

same logic of processing, is at play, spanning implicit and explicit representation and super-

vised and unsupervised learning. The results also support the central idea of this thesis, that 

what is canonically called statistical learning is part of a larger unsupervised learning system, 

incorporating more abstract conceptual information as well as low-level co-occurrence statis-

tics. Combining the findings of this chapter with the structural novelty effect reported in the 

previous chapter clearly shows that there are complex interactions between representations on 

different levels of abstraction in unsupervised learning. Furthermore, we see support for the 

idea that consolidation and explicitness of knowledge are important moderators for these inter-

actions. 

The results of the current chapter are in line with the interpretation given in the previous 

chapter. The structural novelty effect found there was interpreted as a result of a structure-level 

interference, where the representational overlap between previously learned and newly encoun-

tered pairs leads to proactive interference, i.e., hindering the learning of the new pairs. Based 

on the findings of the current chapter, we can extend this interpretation by a consolidation-

driven abstraction of the shared feature encoded by the representational overlap of the old pairs. 
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This emergence of representation on several hierarchical levels amounts to a factorization of 

the representation, representing the abstract feature of horizontality in its own right, allowing 

for its interference-free application to novel input. This parsimonious interpretation explains 

both the structural novelty effect in the absence of consolidation and the generalization behav-

ior after consolidation with the representational overlap of learned pairs under the assumption 

of a restructuring of representations during sleep. This assumption seems reasonable consider-

ing previous empirical findings and theoretical accounts of consolidation (3.1.1) and the find-

ings presented in the current chapter. 

A hypothesis derived from linking the current findings to previous research on the effect 

of consolidation on memory and complementary learning systems is that for the participants 

with implicit knowledge, the statistical learning part, i.e., learning specific pairs, mainly de-

pends on networks within the hippocampus (Schapiro, Turk-Browne, et al., 2017), while the 

sleep-dependent abstraction observed in the current experiments mainly depends on hippocam-

pal-neocortical interactions (McClelland et al., 1995). Apart from testing this hypothesis di-

rectly using neural measurements appropriate for human sleep research (Uji & Tamaki, 2023), 

future studies could also go deeper into sleep physiology to study the effect of specific sleep 

stages (slow-wave-sleep vs. rapid-eye-movement-sleep) and investigate if the same patterns 

are found as for previous research focusing on more explicit representations (Chambers, 2017; 

Klinzing et al., 2019; Pöhlchen & Schönauer, 2020). A further related open question is how the 

quick abstraction and generalization are realized for participants with explicit knowledge and 

how that relates to the slower consolidation-dependent process observed for participants with 

implicit knowledge. 

In the previous chapter, I reported a retroactive interference for participants with ex-

plicit knowledge, showing that a second training phase with novel items reduces their perfor-

mance on items of the first training phase (comparison of Experiments 1a and 2a). Comparing 
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the results of the conditions without consolidation (Experiment 1a) to the one with asleep con-

solidation (Experiment 3a), we do not have significant evidence for release of interference 

based on consolidation (although this comparison may have been underpowered). This is at 

odds with previous results showing a release from retroactive interference by asleep consoli-

dation (Abel et al., 2023; Ellenbogen et al., 2006) for the domain of declarative memory. In 

contrast to the structure-level proactive interference reported for implicit participants in Exper-

iment 1a (structural novelty effect) was released after asleep consolidation in Experiment 3a. 

This suggests overall important differences in how prior and novel representations interact for 

implicit and explicit representations. For participants with implicit knowledge, I found proac-

tive interference specific to orientation and released by consolidation, while for participants 

with explicit knowledge, I found retroactive interference not specific to orientation and (prob-

ably) not released by consolidation. These findings might be related to previous research show-

ing divergent consolidation trajectories in auditory statistical learning for participants with ex-

plicit and implicit knowledge (H. Liu et al., 2023). There, it was shown that explicit represen-

tations tend to decay over a 24-hour period, while implicit representations are strengthened. 

However, this study only compared a no-consolidation group to a 24-hour consolidation group. 

Therefore, It is not possible to deduce the role of sleep in their findings. Overall, the findings 

reported in this chapter support the argument of the previous chapter that tracking explicitness 

or implicitness of knowledge is critical in statistical learning research, as participants with ex-

plicit and implicit knowledge again show important quantitative and qualitative differences in 

their performance. 

Interestingly, for the current domain, I did not replicate previous findings suggesting 

that a phase of asleep consolidation would lead from implicit to explicit representation (Fischer 

et al., 2006; Wagner et al., 2004; Zander et al., 2017) and, therefore increase the proportion of 

participants with explicit knowledge in conditions containing asleep consolidation. For our data 
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the proportion of participants with explicit knowledge was independent of sleep. This leads to 

the question of which features or context variables of a task moderate whether or not such an 

effect is found. 

The current results are in line with previous results suggesting that for the alternating 

serial reaction time (ASRT) task, learning of specific simple chunks happens online, during 

training sessions, while the acquisition of more complex higher-order rules crucially depends 

on offline phases (Quentin et al., 2021). In a similar setup, it was also demonstrated that previ-

ous exposure to such higher-order rules led participants to interpret subsequent new input in 

line with these rules (Kóbor et al., 2020). However, in the context of the ASRT task, higher-

order learning describes second- or third-order temporal transitions between specific elements 

(i.e., non-adjacent associations), as compared to simple adjacent transitions. These are, there-

fore, directly observable in the input and not latent factors as the underlying orientation in the 

study presented in the current chapter. Furthermore, a benefit of (some types of) asleep consol-

idation has also been demonstrated in statistical learning using probabilistic input as compared 

to deterministic input (within chunk conditional probabilities of 1) (Durrant et al., 2013, 2011), 

in cross-modal transfer of statistical learning (Durrant et al., 2016), and for statistical learning 

in the presence of interference (McDevitt et al., 2022). Combining the findings of these previ-

ous studies with the findings presented in the current chapter might suggest that the critical 

boundary for consolidation dependence in unsupervised learning is not just between observable 

(statistical learning) and more latent (structure learning) features but between simple (adjacent, 

unimodal, specific, deterministic, and interference-free) and complex (non-adjacent, cross-

modal, abstract, probabilistic, or interference-based) regularities. 

Summarizing the results of the current and the previous chapter, we see that while par-

ticipants with explicit knowledge can immediately generalize structural knowledge from one 

unsupervised learning context to another, participants with implicit knowledge show a 
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structural novelty effect in immediate transfer, only generalizing after a phase of asleep, but 

not awake, consolidation. The results for the participants with implicit knowledge highlight the 

complex interactions of representations over different levels of abstraction and support the ne-

cessity of novel paradigms that can advance our understanding of how what is canonically 

called statistical learning is related to the unsupervised learning of more abstract, conceptual 

knowledge. Furthermore, critical moderating roles of consolidation and the explicitness of 

knowledge have been clearly demonstrated.  
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CHAPTER 4 

 

Spatio-Temporal Visual Statistical Learning 

 

Visual statistical learning is classically investigated in two independent lines of research: tem-

poral and spatial VSL. However, visual input is not either spatially or temporally structured in 

real-world environments, but always both. In the current chapter, I present a series of five ex-

periments using a novel spatio-temporal visual statistical learning paradigm based on moving 

spatially defined patterns in and out of the participants' view over time. I first validate that 

learning is possible in this new setup (Experiments 4a+b) and then show that participants use 

both the temporal regularities (Experiment 5c) and the perceived motion (5b) to learn the spa-

tial patterns with different levels of noise (Experiment 5a). 

 

4.1 Spatial and Temporal Regularities in Visual Statistical Learning 

As real-world regularities in the visual input are not either spatial or temporal but always both, 

it has been suggested that understanding visual input must build on a combination of both of 

them (Gepshtein & Kubovy, 2000; Hochberg, 1968; Johansson, 1973; Rolls, 2012; Stone, 

1998; Wallis & Rolls, 1997). Obviously, spatial regularities in one moment are not independent 

of spatial regularities in the next. Indeed, spatio-temporal stability is sometimes cited as a de-

fining feature of objects and object cognition (Baillargeon, 2008; Piaget, 1954). What distin-

guishes work done within the statistical learning paradigms from previous work on the role of 

spatio-temporal regularities in visual input is the focus on unsupervised, implicit learning of 

stimuli in unsegmented input (see definition of statistical learning in Chapter 1.1.1). 

However, only a small set of studies in visual statistical learning has started to explore 

the connection between spatial and temporal features of the visual input. Turk-Browne and 
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Scholl (2009) trained participants on typical spatial or temporal visual statistical learning par-

adigms but then tested participants using both spatial and temporal tests, regardless of the type 

of initial training. The results showed a significant transfer between spatial and temporal setups. 

This demonstrates that representations built during VSL are flexible enough to be applied in 

tests that vary from the original presentation mode without directly demonstrating spatio-tem-

poral processing. Kirkham et al. (2007) showed that infants could learn spatio-temporal se-

quences defined by the order of a set of global positions. This demonstrates a form of spatio-

temporal processing; however, it does not realize the same type of relative spatial association 

usually used in spatial VSL research. In short, the feature of global position can be seen as more 

akin to shape identity in usual temporal VSL setups as it realizes a unique stimulus that is 

predictive of the following unique stimulus. Tummeltshammer et al. (2017) showed that learn-

ing forward and backward transitional probabilities is constrained to a purely temporal setup 

and is not possible in a spatio-temporal setup. However, the specific experimental design used 

might have biased participants in the spatio-temporal condition to learn patterns spatially in 

one particular arrangement, as will be discussed in more detail in the discussion section of this 

chapter. Xu et al. (2023) showed that attention is not only guided by spatial and temporal reg-

ularities separately but also by spatio-temporal regularities. Although this is suggestive of gen-

eral implicit spatial-temporal learning, it does not focus on learning reappearing chunks in un-

segmented visual input, as is the focus of the current work. Finally, Yan et al. (2023) investi-

gated the temporal associations formed between arrays containing spatial associations and 

found that participants formed predictions about temporal sequences based on spatial configu-

rations rather than single objects. Although this is somewhat complementary to the approach 

taken in the current study, the specific paradigm used by Yan et al. is a strong deviation from 

setups usually referred to as statistical learning as it combined reinforcement and unsupervised 
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learning, with partially segmented input and several hours of exposure (as compared to several 

minutes usually used in VSL experiments). 

All of these studies contributed specific ways of combining space and time in visual 

statistical learning paradigms. What is missing, however, is a paradigm providing a systematic 

way of studying how spatio-temporal regularities are used in implicit learning, using typical 

properties of statistical learning paradigms to establish continuity with the rich existing SL 

literature. 

 

 

Figure 4.1 Spatio-temporal VSL Setup. The top left panel shows the standard spatial visual 

statistical learning setup. The bottom left panel shows the standard temporal visual statistical 

learning setup. The right panel shows the new spatio-temporal visual statistical learning setup 

(stVSL). There, the visual scenes are conceptualized as part of a larger visual environment, 

populated with the pairs of the inventory. Participants only see a 3x3 snapshot at a given time, 

akin to the 3x3 scene used in spatial VSL. However, the following snapshot is given by moving 

the shapes under the aperture by one grid cell, making the succession of snapshots temporarily 

dependent on each other, as compared to them being identical and independently distributed 

(i.i.d.) as in the spatial VSL setup. 

 

4.2  The Spatio-Temporal Visual Statistical Learning Paradigm 

As mentioned above, in the real world, regularities in the visual input are not either spatial or 

temporal but always both. This means that spatial regularities in one given moment are not 
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independent of spatial regularities in the next moment. For example, the way the percept of a 

moving object changes in the eye of an observer provides important information about the 

spatio-temporal structure of the object, as specific views of the object predictably follow each 

other. Similarly, observing half an object emerging from behind an occluder allows for a clear 

prediction of what will be seen next, given knowledge of the object and the observed movement 

trajectory. However, the classic spatial VSL paradigm isolates spatial regularities, creating a 

situation where the presented scenes are supposed to be independent and identically distributed 

(i.i.d.). Although it is useful to be able to separate spatial and temporal regularities and study 

them independently in spatial VSL and temporal VSL, the interaction of the two during natural 

vision can only be understood by combining them. Therefore, I developed a new spatio-tem-

poral VSL (stVSL) paradigm in which spatially defined patterns move in and out of the ob-

server's view over time. 

The single grid-based scenes presented in an independent and identically distributed 

(i.i.d.) fashion in spatial VSL studies can be considered as snapshots of a grid-like environment 

populated with the spatial patterns of the underlying inventory (Figure 4.1). For the new spatio-

temporal VSL paradigm, instead of sampling random scenes from this environment, a part of 

the environment was visible through an aperture. Shapes moved in and out of the participants' 

view by periodically shifting the environment under the aperture one grid cell at a time. This 

also led to partial presentations of shape pairs when they were moving in and out. This added 

spatial uncertainty was balanced with the overall temporal coherence, which counters any vio-

lation of the spatial structure over time. I.e., although I see half a pair right now, the other half 

will reliably become visible after the next movement. 

Using this new paradigm, I show that participants can learn the underlying spatial struc-

ture in this setup (Experiment 4a and 4b), that the extent of learning is not a function of added 

spatial noise alone (Experiment 5a), that participants crucially rely on the temporal regularity 
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to recover the spatial patterns (Experiment 5c), and that participants use perceived motion as a 

cue to temporal regularities (Experiment 5b). 

 

4.3 Proof-of-Concept Experiments 

To test if learning is possible in the new spatio-temporal VSL paradigm, I conducted Experi-

ment 4a using the same training structure and tests as a classic spatial VSL study (Fiser & Aslin, 

2001) while letting the scenes unfold over time in the new spatio-temporal VSL fashion. For 

comparison, I also conducted an online replication of the classic experiment (Experiment 4b). 

 

4.3.1 Experiment 4a: spatio-temporal VSL Proof-of-Concept 

Participants 

20 participants (6 female, mean age = 25, SD = 6.5) were recruited via prolific.co. The hourly 

compensation was £ 6.7. All participants had normal or corrected-to-normal vision. The sample 

size was based on the original study by Fiser and Aslin (2001). The study was approved by the 

Hungarian United Ethical Review Committee for Research in Psychology (EPKEB), and all 

participants provided informed consent. 

 

Materials 

The stimuli were taken from Fiser and Aslin (2001) and consisted of 12 abstract black shapes 

on a white background. The shapes were grouped randomly to form six pairs (two horizontal, 

two vertical, and two diagonal) for each participant. 144 scenes were created by placing one 

horizontal, one vertical, and one diagonal pair in a 3x3 grid without any segmentation cues. 

Each shape's maximum horizontal and vertical extension was 50% of the size of one grid cell. 

As this was an online study, participants conducted it on their own computers using Google 

Chrome, Safari, or Opera browser. Only desktop and laptop computers were admissible, but no 
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smartphones or tablets were. Stimuli were presented using custom JavaScript code built with 

the jsPsych library (version 6.1.0) (Leeuw, 2015). As participants used different devices (screen 

size and resolution), the visual angle of the shapes was not the same for all participants. Instead, 

the 3x3 grid extended over 600x600 pixels and was centered in the middle of the screen. The 

remaining screen outside the grid was empty (white). 

 

Procedure 

Participants first passively observed the familiarization phase before conducting the test phase. 

For the familiarization phase, participants received only minimal instructions, stating that they 

should pay attention to what was happening on the screen and that they would be asked simple 

questions about it later. The pair structure of the scenes was not mentioned. 

In this experiment, the scenes moved in and out of the screen. Starting from one com-

pletely visible scene, the scene moved out by one grid cell at a time, while a new scene simul-

taneously moved in by one grid cell at a time. There were no segmentation cues between scenes, 

meaning that all the stimuli were part of one continuous stream for the participants. Each mo-

tion took .5 seconds and was animated as a constant speed translation along the horizontal or 

vertical axis. The image then stood still for two seconds between motions. The ordering of 

scenes was random for each participant, constrained so that no two identical pairs would be 

visible simultaneously. Participants saw left, right, up, and down motion. Periodically, the mo-

tion direction changed, going from one orientation, i.e., horizontal motion, to the other, i.e., 

vertical motion. A change of direction occurred after 6, 9, or 12 steps. Overall, all participants 

saw leftward, rightward, upward, and downward motions for the same number of steps. 

As individual scenes were seen longer in Experiment 4a than 4b (they move in and out 

over several steps), Experiment 4a used only half of the original 144 scenes (balanced for pair 

frequency and co-occurrence). The familiarization phase of Experiment 4a took nine minutes. 
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The test phase consisted of 36 2-alternative forced choice (2AFC) trials. In each trial, 

participants saw a real pair and a foil pair after each other (randomized order, two-second 

presentation, and one-second inter-stimuli-interval) and indicated which of the two was more 

familiar based on the familiarization phase by pressing "1" or "2" on the keyboard. Overall, six 

foil pairs, two horizontal, two vertical, and two diagonal, were created by re-combining shapes 

from different pairs of the familiarization phase. Each real pair was tested once with each foil 

pair. After the test phase, participants answered open questions to assess their explicit 

knowledge of the pair structure (see Appendix A). 

 

Results 

Two participants were excluded from the analysis for having verbalizable explicit knowledge 

of the pairs. The remaining participants performed significantly above the chance level of 50%: 

M = 57.7, SE = 2.4, t(17) = 3.18, p = .005, d = 0.75, BF = 8.8 (see Figure 4.2). As in the previous 

chapters, all Bayes Factors (BF) reported were calculated using the BayesFactor R package 

(Rouder et al., 2012). In my interpretations, I conservatively counted results as significant if 

my criteria for both p-values (< .05) and BF (> 3) were met. 

 

Discussion 

The results showed that participants could learn pairs in the novel spatio-temporal VSL setup, 

therefore providing a first proof-of-concept for the feasibility of this paradigm. 

 

4.3.2 Experiment 4b: Online Replication of Spatial VSL 

In order to compare the stVSL proof-of-concept experiment with the previously used spatial 

VSL setup, I conducted an online replication of Experiment 1 of Fiser and Aslin (2001). 
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Participants 

20 participants (7 female, mean age = 24.7, SD = 5.5) were recruited via prolific.co. The hourly 

compensation was £ 6.7. All participants had normal or corrected-to-normal vision. The sample 

size was based on the original study by Fiser and Aslin (2001). The study was approved by the 

Hungarian United Ethical Review Committee for Research in Psychology (EPKEB), and all 

participants provided informed consent. 

 

Materials 

The materials were identical to Experiment 4a. 

 

Procedure 

The procedure was identical to Experiment 4a, with the difference that the visual scenes were 

presented following the traditional spatial VSL setup (Fiser & Aslin, 2001) rather than the novel 

spatio-temporal VSL setup. Therefore, participants saw one scene after another for two seconds 

with a one-second inter-trial interval between them. The order of scenes was randomly chosen 

for each participant. An attention check was included as the static input may have been less 

engaging than the dynamic input in Experiment 1a. For the attention check, text appeared in 

the central cell of the grid, prompting participants to press the space bar. Simultaneously, five 

black squares appeared in randomly chosen cells of the grid to mimic the overall appearance 

of the used visual scenes. The attention check disappeared every 2 seconds and reappeared after 

.5 seconds. The number of times the attention check was shown before the space bar was 

pressed was recorded. 

As individual scenes were seen for a longer duration in Experiment 4a than in 4b (be-

cause they are moving in and out over several steps), Experiment 4a used only half of the 

original 144 scenes (balanced for pair frequency and co-occurrence). Overall, the 
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familiarization phase of Experiment 4a took nine minutes, while for Experiment 4b it took 

seven minutes and 12 seconds. Therefore, the amount of exposure was not completely identical 

for the two experiments. However, the goal was not to compare the two setups directly but to 

test whether participants can implicitly learn the pairs in the new stVSL setup. 

 

Results 

Two participants were excluded from the analysis for having verbalizable explicit knowledge 

of the pairs. The remaining participants performed significantly above the chance level of 50%: 

M = 56.5, SE = 2.5, t(17) = 2.60, p = .019, d = 0.61, BF = 3.2 (see Figure 4.2). 

 

 

Figure 4.2 Experiments 4a and b Results. The y-axis represents the participants' mean perfor-

mance on the 2-alternative forced choice (2AFC) trials, used as the measure of learning of pairs 

embedded in the familiarization stream. Error bars represent the standard error. The dotted line 

indicates the chance level of 50%. Stars represent the significance of the difference from 

chance. * p < 0.05; ** p < 0.01. 
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Discussion 

Participants learned the spatial structure equally well in both the classic i.i.d. (Experiment 4b) 

and the novel spatio-temporal VSL setup (Experiment 4a). This supports the feasibility and 

usefulness of the novel stVSL paradigm. 

 

4.4 The Role of Temporal Coherence and Perceived Motion 

Experiment 4a demonstrated that learning is possible in the spatio-temporal VSL setup. But 

which features of this paradigm contributed to learning to what extent? One possible explana-

tion is that participants did, in fact, use temporal coherence of the input to learn the spatial 

patterns despite the spatial noise (partial presentations) added by the spatio-temporal setup. An 

alternative explanation is that spatial VSL is simply robust enough to spatial noise to show 

similar test performance with or without this added noise. The experiments presented here 

tested this directly in two ways: introducing pairs with different noise levels within participants 

and realizing a contrast between the presence and absence of temporal coherence between par-

ticipants. To better understand the novel paradigm, I further introduced a condition to investi-

gate the role of perceived motion as a cue to temporal regularities. 

Experiment 5a introduced pairs with different levels of spatial noise (e.g., number of 

partial presentations) to the stVSL paradigm to test whether the strength of learning is a simple 

function of the amount of noise. Experiment 5b removes the motion animations to probe the 

effect of temporal coherence in the absence of obvious perceptual cues. Experiment 5c removes 

the temporal coherence altogether to provide experimental evidence for its effect on learning 

spatial patterns. 
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Figure 4.3 Presentation Modes in Experiments 5a-c. This graphic visualizes the temporal rela-

tionship of subsequent spatial patterns in Experiments 5a-c. In Experiments 5a and 5b, visual-

ized in red, the visual aperture shifts by one cell at a time, leading to a sequence of temporally 

coherent scenes. In Experiment 5c, visualized in yellow, the visual aperture visits the same 

overall parts of the environment, leading to the same number of partial presentations of pairs. 

However, as visualized with the yellow arrows, the order of visual scenes is random and, there-

fore, not temporally coherent. 

 

4.4.1 Experiment 5a: The Role of Spatial Noise in Spatio-Temporal VSL 

Participants 

88 participants (39 female, mean age = 26.9, SD = 8.0) were recruited via prolific.co. The 

hourly compensation was £ 6.7. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to achieve a power of 80% for three parallel comparisons (i.e., alpha 

= .1666…) with medium effect sizes (cohen's d = 0.5) and rounded up to account for expected 

exclusions. The study was approved by the Hungarian United Ethical Review Committee for 

Research in Psychology (EPKEB), and all participants provided informed consent. 
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Materials 

The materials were identical to Experiment 4a. 

 

Procedure 

The general procedure of Experiment 5a was identical to Experiment 4a, except for the specific 

movement directions. Participants no longer saw all directions of movements the same number 

of times; instead, participants were randomly assigned to one of two conditions, having more 

horizontal or more vertical movement. 

In the horizontal condition, 75% of the movements were along the horizontal axis, with 

equal movements to the left and right. 25% of movements were along the vertical axis, with 

equal movements up and down. For horizontal movement, the change of movement direction 

occurred after nine, 12, 15, or 18 steps. For vertical movement, the change occurred after three 

or six steps. Through this biased movement pattern, horizontal pairs had more partial presen-

tations than vertical pairs, as they were shown partially only during horizontal movement. This 

pattern of movement and partial presentations were inverted for the vertical condition. Refer-

ring to both conditions simultaneously, I speak of parallel pairs, being aligned with the pre-

dominant movement direction (horizontal pair in the horizontal condition), and orthogonal 

pairs, being orthogonal to the predominant movement direction (vertical pairs in the horizontal 

condition). In both conditions, diagonal pairs had the overall highest number of partial presen-

tations, as they were shown partially during both horizontal and vertical movement. The con-

ditional probabilities of the shapes of one pair, i.e., the probability that if one shape of a pair is 

visible, the other shape is visible as well, were .916  for the orthogonal pairs, .75 for the parallel 

pairs, and .6 for the diagonal pairs. 
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Figure 4.4 Experiments 5a-c Results. The y-axis represents the performance on 2AFC trials. 

Error bars represent the standard error. The dotted line indicates the chance level. Stars repre-

sent the significance of statistical tests: * p < 0.05; ** p < 0.01; *** p < 0.005. Top panel: 

results of pair type by experiment. Middle panel: main effects of experiment averaged over 

pair types. Lower panel: main effects of pair type averaged over experiments. 
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Results 

Before analysis, three participants were removed for response bias (bias for one of the two 

response buttons > 2.5 SD), and 15 participants were removed for acquiring explicit knowledge 

of the task structure. For data of explicit participants, see Appendix D. 

One-sample t-tests showed that performance for the orthogonal (M = 57.1, SE = 2.3, 

t(69) = 3.17, p = .018, d = 0.38, BF = 12.2) and the diagonal (M = 58.7, SE =  2.0, t(69) = 4.4, 

p < .001, d = 0.53, BF = 535) pairs was significantly different from chance. The performance 

for the parallel pairs was not different from chance: M = 54.4, SE = 2.0, t(69) = 2.2, p = .157, 

d = 0.26, BF = 1.2. The reported significant tests are correct for multiple comparisons over all 

three experiments (5a-c) using the Holm-Bonferroni method (Holm, 1979). 

Combining the data for all three pair types, we see an overall significant difference from 

chance: M = 56.7, SE = 1.1, t(69) = 5.96, p < .001, d = 0.71, BF = 1.4*105. 

 

4.4.2 Experiment 5b: The Role of Perceived Motion in Spatio-Temporal VSL 

Participants 

89 participants (31 female, mean age = 33.4, SD = 10.9) were recruited via prolific.co. The 

hourly compensation was £ 6.7. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to achieve a power of about 80% for three parallel comparisons (i.e., 

alpha = .1666…) assuming medium effect sizes (cohen's d = 0.5) and rounded up to account 

for expected exclusions. The study was approved by the Hungarian United Ethical Review 

Committee for Research in Psychology (EPKEB), and all participants provided informed con-

sent. 

 

Materials 

The materials were identical to Experiment 4a. 
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Procedure 

The only difference between Experiments 5a and 5b was that in 5b, the animated motion, a 0.5-

second smooth transition of the shape between scenes, was removed and replaced with a 0.5-

second blank screen. This means that the temporal coherence was the same as in 5a, i.e., if only 

one shape of a pair moved in on the last step, the other one will reliably move in on the next 

step. However, the strong perceptual cue to temporal coherence given by motion was removed. 

Comparing the results of Experiment 5a and 5b will, therefore allow us to tease apart the effects 

of the spatio-temporal co-occurrence statistics itself with the effect of perceived motion as a 

cue to temporal coherence. Additionally, as the static input may have been less engaging, an 

attention check was included during the familiarization phase, as in Experiment 4b. 

 

Results 

Prior to analysis, six participants were removed for response bias, one participant was removed 

for failing attention checks (response time to attention check > 3 SD), and 10 participants were 

removed for acquiring explicit knowledge of the structure of the task. For data of explicit par-

ticipants, see Appendix D. 

One-sample t-tests showed that performance for all of the three pair types was not sig-

nificantly different from chance: parallel (M = 52.9, SE = 2.2, t(71) = 1.3, p = .006, d = 0.15, 

BF = 0.29), orthogonal (M = 51.2, SE = 2.1, t(71) = 0.5, p = .999, d = 0.06, BF = 0.15), diagonal 

(M = 56.0, SE = 2.2, t(71) = 2.7, p = .064, d = 0.32, BF = 3.5). The reported significant tests 

are correct for multiple comparisons over all three experiments (5a-c) using the Holm-Bonfer-

roni method (Holm, 1979). 

Combining the data for all three pair types, we see an overall significant difference from 

chance: M = 53.4, SE = 1.2, t(71) = 2.84, p = .006, d = 0.33, BF = 5.2. 
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4.4.3 Experiment 5c: The Role of Temporal Coherence in the Spatio-Temporal VSL 

Participants 

90 participants (30 female, mean age = 26.2, SD = 8.9) were recruited via prolific.co. The 

hourly compensation was £ 6.7. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to achieve a power of about 80% for three parallel comparisons (i.e., 

alpha = .1666…) assuming medium effect sizes (cohen's d = 0.5) and rounded up to account 

for expected exclusions. The study was approved by the Hungarian United Ethical Review 

Committee for Research in Psychology (EPKEB), and all participants provided informed con-

sent. 

 

Materials 

The materials were identical to Experiment 4a. 

 

Procedure 

The only difference between Experiment 5a and 5c was that in 5c, the temporal coherence of 

the stimuli presentation was removed (Figure 4.3). Participants still saw the same images which 

participants in Experiment 5a saw between movements. However, instead of moving them in 

and out of the grid by one cell at a time, they were temporally shuffled and presented without 

animations. This realizes visual input with the exact same level of spatial noise as in Experi-

ment 5a but with an i.i.d. presentation instead of a temporally structured one. Additionally, as 

the static input may have been less engaging, an attention check was included during the fa-

miliarization phase, as in Experiment 4b. 
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Results 

Prior to analysis, two participants were removed for response bias, two participants were re-

moved for failing attention checks (response time to attention check > 3 SD), and 10 partici-

pants were removed for acquiring explicit knowledge of the structure of the task. For data of 

explicit participants, see Appendix D.  

One-sample t-tests showed that performance for neither of the three pair types was sig-

nificantly different from chance: parallel (M = 48.9, SE = 2.0, t(75) = -.55, p = .999, d = 0.06, 

BF = 0.146), orthogonal (M = 53.4, SE = 2.0, t(75) = 1.75, p = .338, d = 0.2, BF = 0.54), 

diagonal (M = 55.5, SE = 2.3, t(75) = 2.4, p = .112, d = 0.28, BF = 1.86). The reported signifi-

cant tests are correct for multiple comparisons over all three experiments (5a-c) using the 

Holm-Bonferroni method (Holm, 1979).  

Combining the data for all three pair types, we see an overall significant difference from 

chance according to t-test p-value, but not Bayes Factor: M = 52.6, SE = 1.2, t(75) = 2.18, p = 

.032, d = 0.25, BF = 1.18. 

For further analysis, I entered Experiment 5a, 5b, and 5c into one 3x3 mixed-ANOVA 

with pair type (parallel, orthogonal, diagonal) as a within-subject factor and experiment (5a, 

5b, 5c) as a between-subject factor. The results showed a significant main effect of pair type 

(F(2, 430) = 3.74, p = .025, η2 = .012) and of experiment (F(2, 215) = 3.22, p = .042, η2 = .012) 

but no significant interaction (F(4, 430) = 0.62, p = .649, η2 = .004). Tukey's SHD post-hoc 

tests showed that the diagonal pairs were learned significantly better than the parallel pairs (p 

= .020) and that learning in Experiment 5c (i.i.d. condition) was significantly worse than in 

Experiment 5a (p = .043). The results for all three experiments are visualized in Figure 4.4. 
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4.4.4 Discussion of Experiments 5a-c 

Over Experiments 5a-c, I found that participants learned pairs with low and high spatial noise 

in the temporally coherent condition (5a), whereas they learned them significantly worse or not 

at all without the perceived motion (5b) and without the temporal coherence (5c). The perfor-

mance for the condition with temporal coherence but no perceived motion (5b) is descriptively 

between the other two conditions but not significantly different from either. This suggests a 

gradual effect where the effect of temporal coherence is strengthened by the perceptual cue to 

its presence. Overall, these results are direct experimental evidence (5a vs. 5c) that participants 

use temporal regularities to acquire spatial patterns, and they furthermore support the idea that 

perceived motion is an important cue to temporal regularity. 

Surprisingly, participants learned the diagonal pairs better than the coherent pairs de-

spite their lower conditional probability. This exploratory finding suggests that the learning of 

spatial regularities is not a simple function of spatial and temporal coherence but that other 

factors, such as prior biases, are at play. 

 Finally, this study was the first application of the novel stVSL paradigm, and all present 

experiments used the same arbitrary length of exposure in the familiarization phase. To gener-

alize my findings, Supplementary Experiment 1 replicated Experiment 5a, using twice the 

amount of training. I found overall similar results in both experiments with no significant dif-

ferences. See Appendix E for details. 

 

4.5 General Discussion 

In the current chapter, I presented a series of five experiments that established a novel spatio-

temporal visual statistical learning paradigm in order to investigate how spatial and temporal 

regularities in the visual input are combined in implicit learning. The results showed that im-

plicit learning is possible in such a setup, leading to a similar level of performance as purely 

C
E

U
eT

D
C

ol
le

ct
io

n



86 

spatial learning, and provided experimental evidence that participants used the temporal coher-

ence of the input in the implicit learning of spatial patterns. The results furthermore suggested, 

without reaching statistical significance, that perceived motion is a crucial feature allowing 

participants to use the temporal regularities in the input for learning spatial patterns. 

 The current work goes beyond previous studies on spatial and temporal regularities in 

VSL in important ways. While Turk-Browne and Scholl (2009) showed that VSL is flexible 

enough to allow for temporal tests after spatial learning and spatial tests after temporal learning, 

their findings did not go beyond showing general associations between shapes of a chunk. Im-

portantly, in their setup, there was no meaningful spatial structure to test for after temporal 

learning and no meaningful temporal structure to test for after spatial learning. In contrast to 

this, the current study is specifically designed to demonstrate the role of temporal coherence 

for the learning of spatially defined structure, therefore meaningfully connecting both domains 

in an ecologically relevant way. In their spatial context condition, Tummeltshammer et al. 

(2017) presented infants with spatial structure in a setup similar to the current stVSL paradigm. 

However, there are a number of key differences. Their null result for the specifics of the tem-

poral ordering of stimuli aligns with my interpretation that this type of setup leads to the rep-

resentation of spatial patterns. Still, it is noteworthy that their specific way of moving stimuli 

through the screen, using only one direction of motion for each participant, might have been a 

case that lends itself more readily to learning temporal structure. This is plausible as in this 

setup one shape of a pair always moves in first and the other moves in second. This is not the 

case in my setup, using all cardinal directions. However, in their setup, but not in mine, there 

is an additional strong cue for representing the structure spatially. The same shapes and shape 

pairs appeared on the screen multiple times simultaneously. This could lead to a kind of pop-

out effect of the spatial regularity, potentially overshadowing all effects of the temporal regu-

larity observed at the borders of the screen. These two effects, the connection of movement 
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directions and temporal ordering, and the pop-out effect of multiple simultaneous presenta-

tions, could easily be studied in isolation and interaction using my new stVSL setup. Yan et al. 

(2023) investigated the temporal associations formed between arrays containing spatial asso-

ciations and found that participants formed predictions about temporal sequences based on 

spatial configurations rather than single objects. The authors framed this as a statistical learning 

effect, which can be seen as complementary to the current work. While I study how temporal 

regularities affect the learning of spatial patterns, Yan et al. studied the role of spatial patterns 

in learning temporal patterns. However, as Yan et al. used a combination of reinforcement and 

unsupervised learning, and they used much more extensive training than usual in the SL liter-

ature (hours instead of minutes), their results can not be easily related to the statistical learning 

literature as a whole. However, studying the role of learned spatial patterns in learning temporal 

patterns in an unsupervised SL setup would, in fact, be complementary to the current work and 

advance our understanding of the role of spatio-temporal regularities in visual statistical learn-

ing. 

 A critical way in which the current study goes beyond previous attempts of studying 

the connection of spatial and temporal regularities in VSL is that it provides direct evidence of 

an effect of temporal regularities in implicitly learning spatial patterns (significant difference 

between Experiments 5a and 5c). This suggests that the process underlying spatial VSL does 

not consider only momentary spatial co-occurrence but also coherence over time. A related 

type of learning has been demonstrated in neural network models of unsupervised learning of 

invariant visual object representation by implementing a trace learning rule (Wallis & Rolls, 

1997). Units in such models keep a short-term memory trace of their previous activation, which 

leads to weights updating based on a succession of stimuli. As different views of the same 

object follow each other more often than views of different objects, this leads to learning in-

variant object representations by associating the different versions (views) of objects 
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encountered. Such simple neural implementations are one candidate for the mechanistic imple-

mentation of the learning process demonstrated behaviorally in the current study. 

Another line of research from outside the VSL domain related to the phenomenon stud-

ied here, concerns the role of (partial) occlusion in visual perception. Under the heading of 

amodal completion, the majority of studies in this line investigate the role of stimuli-driven 

processes independent of top-down influences (Kanizsa, 1985; van Lier & Gerbino, 2015). 

Recently, a smaller number of studies started to investigate the role of prior knowledge in this 

process, using stimuli that can only be completed appropriately by knowing the structure of the 

whole stimuli (Hazenberg et al., 2014; Hazenberg & van Lier, 2016; Yun et al., 2018). This is 

related to the current work, as the partial presentations of shape pairs moving in and out of the 

visible aperture in my setup can be considered instances of partial occlusion. In the current 

form of my paradigm, I am considering the role of such partial occlusion during learning, while 

the amodal completion studies cited above consider the role of occlusion during object percep-

tion. This can be considered two complementary cases, and future work could aim to combine 

both in one setup. I.e., studying the effect partial presentations during learning have on the 

perception of partially occluded stimuli during testing. The topic of occlusion in spatio-tem-

poral VSL will be revisited in the next chapter. 

 The research presented in the current chapter illustrates both the feasibility and the ne-

cessity of the novel spatio-temporal VSL paradigm. It does so by showing that people can learn 

in this setup (feasibility) and that temporal coherence is directly used for learning spatial pat-

terns (necessity). The current results showed that it is not merely spatial or temporal co-occur-

rence statistics that drive VSL, but that spatio-temporal regularity as a whole is of crucial im-

portance. How does this relate to the research in the previous two chapters, which focused on 

how a combination of low-level co-occurrence statistics and top-down influences of prior 

knowledge drives VSL? Taken together, we can see that the human unsupervised learning 
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system works by combining low-level spatio-temporal statistics and higher-level features. Go-

ing beyond this, the next chapter will demonstrate more intricate connections between the spa-

tio-temporal VSL paradigm and the study of higher-level features in VSL. We will see that a 

perceived overall motion direction and overall item arrangements can exert top-down influ-

ences on what is implicitly learned or inferred from visual input. Furthermore, a variation of 

the stVSL paradigm will show, in line with the results presented in Chapter 2, that explicitness 

of knowledge is a crucial moderator of how participants can apply their acquired knowledge. 
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CHAPTER 5 

 

Higher-Level Influences in Spatio-Temporal Visual Statistical Learning 

 

The main argument of this dissertation is that what is usually called visual statistical learning 

is part of a larger unsupervised learning system that operates by combining lower-level spatio-

temporal co-occurrence statistics with higher-level top-down biases, flexible combining the 

multitude of available features across levels to achieve a congruent and comprehensive, yet 

parsimonious interpretation of the world. While the previous chapters treated spatio-temporal 

VSL and hierarchical VSL separately, the current chapter highlights their intertwined nature by 

demonstrating that (1) top-down biases can not only be abstracted from specific chunks (as 

demonstrated in Chapters 2 and 3) but can also be induced by higher-level spatio-temporal 

statistics, and that (2) differential behavioral outcomes for participants with explicit and im-

plicit knowledge arise not only in VSL based transfer-learning (as demonstrated in Chapters 2 

and 3) but also in a prediction-based variant of the spatio-temporal VSL paradigm. 

 

5.1 Biases Induced by Higher-Level Features 

In Chapters 2 and 3, I demonstrated that participants could develop biases about the type of 

structures present in a learning context based on abstracting and generalizing common features 

from multiple patterns learned during visual statistical learning. In addition to these learned 

biases, the previous chapters also presented evidence of some pre-existing biases, such as bi-

ases for horizontality over verticality (Chapter 2) and a potential bias for diagonal structures 

during stVSL (Chapter 4). In the current chapter, this is augmented with a third type of bias: 

biases induced by higher-level spatio-temporal features of the input statistics. 
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The experiments presented in the current sub-chapter identify two relevant higher-level 

features that can induce biases: the perceived overall motion direction and the perceived overall 

shape arrangement. I refer to them as higher-level here as they transcend the item-item co-

occurrence statistics usually studied in VSL experiments and instead describe the overall input, 

i.e., properties that each item has (e.g., motion direction) or properties that describe the collec-

tion of all present items jointly (e.g., shape arrangement). The influence of such features has so 

far been largely neglected in VSL research, with a few exceptions discussed in this chapter's 

General Discussion section (5.3.1). 

To enable the systematic investigation of the effect of such higher-level features on 

VSL, two major changes to the spatio-temporal VSL paradigm introduced in the previous chap-

ter were necessary (see Figure 5.1). First, each participant now saw motion along only one 

orientation: horizontal or vertical motion. Second, an occluder was overlaid on the central grid 

cells, orthogonal to the motion direction. The combined effect of these two changes was that 

participants now only perceived motion along a single orientation and only saw shapes next to 

each other along a single, orthogonal orientation. This dissociation allowed for directly com-

paring these two higher-level spatial and temporal features by measuring participants' prefer-

ences for horizontal or vertical pairs. An additional effect of these changes was that some pairs 

were now only presented temporally, i.e., their shapes always followed each other but were 

never visible next to each other, while others were only presented spatially, i.e., their shapes 

always were visible next to each other but never followed each other. The role of perceived 

motion in this setup is specifically targeted by contrasting this setup with and without motion 

animations between Experiments 6a and 6b. 
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Figure 5.1 Experiments 6a and b Setup. Experiment 6a+b introduces two key changes to the 

basic stVSL setup. (1) Participants see only either horizontal or vertical movement (counter-

balanced between groups). (2) An occluder is overlaid over the three central grid cells perpen-

dicular to the movement direction. The combined effect of these two changes is that pairs 

aligned with the movement direction are now presented only temporally, while pairs perpen-

dicular to the movement direction are only presented spatially. The graphics visualize the con-

dition using only horizontal motion. The top panel directly shows what participants see in the 

experiment. The bottom panel is only for illustration purposes as it highlights the underlying 

structure by color coding pairs and making the occluder transparent. 
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5.1.1 Experiment 6a: Biasing VSL by Perceived Motion 

Experiment 6a tested the effect of overall perceived motion direction and directly compared 

the effect of spatial and temporal presentation on learning spatially defined patterns. This was 

enabled by changes in stimuli presentations and the addition of novel tests. These tests allowed 

probing whether participants learned only general associations between pairs or also their spe-

cific spatial arrangements and whether they developed biases about types of arrangements. 

 

Participants 

132 (60 female, mean age = 27.1, SD = 11.1) participants were recruited via prolific.co. The 

hourly compensation was £ 6.7. The sample size calculation was built on the previous experi-

ments but assumed a lower alpha level of .005 to account for the higher number of multiple 

comparisons (more tests in this experiment) and assumed a higher rate of exclusions. The study 

was approved by the Psychological Research Ethics Board of the Central European University, 

and all participants provided informed consent. 

 

Materials 

This experiment used the same materials as the stVSL experiments in Chapter 4. In addition, a 

rectangular occluder image was created, which consists of 1/f-noise and has 50% of the width 

and height of the grid cells. This way, if placed in the center of a grid cell, it covers the central 

part so that the shape present in the cell is not visible. This study was again conducted online, 

using the same setup as described for Experiment 4a in Chapter 4. 

 

Procedure 

The general procedure was built on Experiment 4a of Chapter 4 but introduced two changes. 

First, every participant now saw motion along only one orientation, i.e., only horizontal motion 
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(left, right) or vertical motion (up, down). Participants first saw motion in one direction for 60 

steps, then motion in the opposite direction for 60 steps, then 48 steps in the first motion direc-

tion, and finally 48 steps in the second motion direction. At each motion direction change, an 

attention check appeared, identical to the one used in Experiment 4b of Chapter 4. 

Second, occluders were overlaid over the three central grid cells perpendicular to the 

movement direction, so the shapes within those cells were not visible (Figure 5.1). The com-

bined result of these two changes was that orthogonal pairs (pairs orthogonal to the motion 

direction) were now only presented spatially, without any temporal coherence. I.e., both shapes 

of those pairs were always fully visible together, and they never followed each other. Parallel 

pairs (pairs aligned with the motion direction) were now never visible next to each other in the 

still images between movements (2 sec) and were only partially visible next to each other dur-

ing the short movement period (0.5 sec). However, the shapes had perfect temporal coherence, 

i.e., they always followed each other in the same position of the grid. Diagonal pairs had the 

same type of temporal coherence and partial co-occurrence as parallel pairs, but the shapes did 

not follow each other in the same grid cell but in a different spatial arrangement. Furthermore, 

the higher-level statistics describing the scenes transcending item co-occurrences were altered 

by these changes so that participants only saw motion along one orientation (horizontal or ver-

tical), and they only saw shapes next to each other along one orientation (horizontal or vertical) 

orthogonal to the motion direction. This orthogonality allows a direct comparison of the effects 

of these two manipulations. 

After the nine-minute familiarization phase, participants completed a 2-alternative 

forced-choice (2AFC) test phase. Before completing the same real pair vs. foil pair tests (called 

standard learning trials here) as in the other experiment, participants completed test trials fo-

cusing on spatial arrangement. In spatial learning trials test trials, both options consisted of 

the shapes of the same real pair but were presented once in their correct spatial arrangement 
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(e.g., horizontal) and once in an opposite arrangement (e.g., vertical). Diagonal pairs were 

tested against themselves in a different diagonal arrangement. The same logic was applied to 

the foil instead of the real pairs in bias trials. Note that in those trials, there was no correct 

orientation (i.e., no orientation seen in the familiarization phase). Therefore, there was no cor-

rect answer, and the question was if participants had overall biases to choose either horizontal 

or vertical options. 

 

Results 

Prior to analysis, two participants were removed for response bias (bias for one of the two 

responses buttons > 2.5 SD), two participants were excluded for failing the attention check 

(having the attention check message appear at least ten times over all three instances of the 

attention check), and 18 participants were removed for acquiring explicit knowledge of the 

structure of the task (for data of explicit learners see Appendix D). 

Standard Learning Trials. One-sample t-tests showed that in the standard learning tri-

als performance for the parallel pairs was significantly above chance: M = 58.2, SE = 2.4, 

t(109) = 3.4, p = .004, d = 0.33, BF = 23.5. The performance for the orthogonal (M = 48.6, SE 

= 2.6, t(109) = -0.52, p = .692, d = 0.05, BF = 0.12) and diagonal (M = 54.5, SE = 2.3, t(109) 

= 1.99, p = .148, d = 0.19, BF = 0.70) pairs was not different from chance. These results suggest 

that participants learned only the temporally presented parallel pairs. 

Spatial Learning Trials. One-sample t-tests showed that in the spatial learning trials, 

performance for the parallel pairs was significantly above chance: M = 65.5, SE = 2.7, t(109) 

= 5.68, p < .001, d = 0.54, BF = 1.1*105. The performance for the diagonal pairs was not 

different from chance: M = 52.5, SE = 2.6, t(109) = 0.95, p = .692, d = 0.09, BF = 0.16. The 

performance for the orthogonal pairs was significantly below chance: M = 36.8, SE = 2.6, 

t(109) = -5.2, p < .001, d = 0.49, BF = 1.2*104. 
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Bias Trials. In the bias trials, there were no correct response options. The data for all 

parallel and orthogonal foil pairs was considered together and scored for choosing the parallel 

or orthogonal option. For every participant, the proportion of parallel choices was expressed in 

percent and then subtracted by 50 to get a measure of bias away from a chance level of zero. 

Positive bias suggests more parallel choices, while negative bias suggests more orthogonal 

choices. One-sample t-tests showed that participants chose the parallel options significantly 

more often: M = 8.0, SE = 2.0, t(109) = 3.99, p < .001, d = 0.38, BF = 149. The trials for 

diagonal pairs were not considered in the analysis. The reported significance tests above are 

correct for multiple comparisons over all three test types using the Holm-Bonferroni method 

(Holm, 1979). 

For further analysis, the standard learning trials and spatial learning trials data were 

entered into one 2x3 mixed-ANOVA with test type (standard learning, spatial learning) and 

pair type (parallel, orthogonal, diagonal) as within-subject factors. The results showed a sig-

nificant main effect of pair type (F(2, 545) = 25.6, p < .001, η2 = .19) and a significant interac-

tion (F(4, 545) = 7.4, p < .001, η2 = .06). The main effect of test type was not significant, F(1, 

545) = 1.28, p = .26, η2 = .01. Tukey's SHD post hoc tests showed significantly higher perfor-

mance for the parallel pairs than the orthogonal pairs in the standard learning trials (p = .025), 

and in the spatial learning trials (p < .001). The diagonal pairs showed significantly higher 

performance than the orthogonal pairs only in the standard learning trials (p < .001). The par-

allel pair showed significantly higher performance than the diagonal pair only in the spatial 

learning trials (p = .001). 

A direct comparison was conducted to test whether the high deviation from chance in 

the spatial learning trials was based solely on the bias also measured in the bias trials or if it 

additionally included knowledge about the orientation of the specific pairs. For this purpose, 

the results for the parallel and orthogonal pairs in the spatial learning trials were separately 
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transformed into a measure of deviation from chance, as described for the bias trials. Paired t-

tests showed that the deviation from chance for the parallel pairs (t(109) = -2.60, p = .021, d 

= 0.30, BF = 2.6) but not the orthogonal pairs (t(109) = -1.92, p = .058, d = 0.22, BF = 0.62) 

was significantly higher than the bias measured in the bias trials. This suggests that participants 

had knowledge about the actual orientation of pairs they have learned in addition to a general 

bias. The results for all test types are visualized in Figure 5.2. 

 

 

Figure 5.2 Experiment 6a Results. The y-axis represents the participants' mean performance on 

2AFC trials. Error bars represent the standard error. The dotted line indicates the chance level 

of 50% or 0%. Stars represent the significance of the difference from chance. * p < 0.05; ** p 

< 0.01; *** p < 0.005. The standard learning trials was a standard learning test using one real 

pair from the training phase and one foil pair created by combining shapes of two real pairs. It 

measures learning of item co-occurrence. The spatial learning trials test showed the same real 

pair twice. Once in its correct orientation and once rotated by 90°. It measures learning of the 

spatial arrangement of learned pairs. The bias trials test showed the same foil pair twice. Once 

horizontally and once vertically. There is no correct response, and it measures bias for one of 

the orientations. 
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Discussion 

In this setup, participants only reliably learned the temporally presented parallel pairs. The 

results of the bias trials suggest that participants developed an overall bias to choose options 

aligned with the motion direction perceived during the training, independent of the orientation 

in which a pair appeared originally. Additionally, we see that participants also have knowledge 

about the actual orientation of pairs they have learned. 

These results clearly show that to understand statistical learning, we need to consider 

top-down effects of higher-level biases. However, the exact nature of the interaction between 

learning of specific pairs, the perceived motion direction, and the observed overall bias remain 

unclear. Did participants preferably learn temporally presented pairs and then generalize the 

learned structure to the tests about orientation bias? Or did the perceived motion directly induce 

a bias that can explain both the preferred pair learning and the bias in orientation tests? Exper-

iment 6b was designed to answer this question.  

Regardless of the underlying mechanism, we see the strength such biases can have in 

visual statistical learning, as participants showed no sign of learning the spatially defined or-

thogonal pairs, even though these pairs were regularly seen in the input with only one other 

adjacent shape. Treating statistical learning as being exclusively based on lower-level co-oc-

currence statistics would have wrongly predicted strong learning for these pairs. 

 

5.1.2 Experiment 6b: Biasing VSL by Spatial Arrangements 

Was the effect in Experiment 6a driven by the underlying spatio-temporal co-occurrence sta-

tistics, i.e., a preference for temporally presented pairs, or by an overall feature of the stimuli 

presentation, i.e., the perceived horizontal or vertical motion? Experiment 6b was designed to 

answer this using the same spatio-temporal structure as Experiment 6a but removing the motion 

animation. 
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Participants 

117 (52 female, mean age = 30.4, SD = 11.9) participants were recruited via prolific. Co. The 

hourly compensation was £ 6.7. The sample size was chosen to match that of Experiment 6a. 

The study was approved by the Psychological Research Ethics Board of the Central European 

University, and all participants provided informed consent. 

 

Materials 

This experiment used the same materials as Experiment 6a. 

 

Procedure 

The procedure was identical to Experiment 6a, apart from the movement animation. Whereas 

in Experiment 6a, between the 2-second stimuli displays shapes moved in and out of the visible 

aperture with a .5-second animated movement, in Experiment 6b, the animation is replaced by 

a .5 blank screen. Note that this manipulation did not alter the spatial and temporal structure. 

Parallel pairs were still presented only temporally, and orthogonal pairs were still presented 

only spatially. 

 

Results 

Prior to analysis, two participants were removed for response bias, six participants were ex-

cluded for failing the attention check (having the attention check message appear at least ten 

times over all three instances of the attention check), and seven participants were removed for 

acquiring explicit knowledge of the structure of the task (for data of explicit learners see Ap-

pendix D). 

Standard Learning Trials. One-sample t-tests showed that in the standard learning tri-

als the performance for all of the pairs was not different from chance: parallel (M = 51.3, SE 
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= 2.5, t(99) = 0.51, p = .99, d = 0.05, BF = 0.13), orthogonal (M = 48.5, SE = 2.9, t(99) = -

0.51, p = 1.00, d = 0.05, BF = 0.126), diagonal (M = 50.0, SE = 2.9, t(99) = 0.00, p = 1.00, d = 

0.00, BF = 0.11). Overall, these results suggest that participants did not reliably learn any pairs 

in this experiment. 

Standard Learning Trials. One-sample t-tests showed that in the spatial learning trials, 

the performance for all of the pairs was not different from chance: parallel (M = 47.0, SE = 

2.7, t(99) = -1.09, p = 1.00, d = 0.11, BF = 0.198), orthogonal (M = 56.5, SE = 2.7, t(99) = 

2.41, p = .107, d = 0.24, BF = 1.7), diagonal (M = 51.5, SE = 2.5, t(99) = 0.59, p = 1.00, d = 

0.06, BF = 0.13). 

Bias Trials. Data for this test was converted to a measure of bias away from chance, as 

in Experiment 6a. One-sample t-tests showed that participants chose the orthogonal options 

significantly more often: M = -9.0, SE = 2.0, t(99) = -4.55, p < .001, d = 0.46, BF = 1,051. 

To test whether the significant difference between parallel and orthogonal pairs in the 

spatial learning trials, found in Experiment 6a along the direction of the overall bias (results of 

bias trials), is also present here, a paired t-test was performed. The results showed significantly 

higher performance for the orthogonal pair trials: t(99) = -2.16, p = .033, d = 0.35, BF = 1.03. 

A direct comparison of both measures was conducted to test whether the results of the spatial 

learning trials were in line with the bias measured in the bias trials. For this purpose, the results 

for the parallel and orthogonal pairs in the spatial learning trials were separately transformed 

into a measure of deviation from chance, as described for the bias trials. Paired t-tests showed 

that neither the deviation from chance for the parallel pairs (t(99) = -2.20, p = .061, d = 0.25, 

BF = 1.1) nor for the orthogonal pairs (t(99) = -0.87, p = .389, d = 0.11, BF = 0.16) were 

significantly different from the bias measured in the bias trials. The reported significant tests 

above are correct for multiple comparisons over all three test types using the Holm-Bonferroni 

method (Holm, 1979). The results for all test types are visualized in Figure 5.3. 
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Figure 5.3 Experiment 6b Results. The y-axis represents the participants' mean performance on 

2AFC trials. Error bars represent the standard error. The dotted line indicates the chance level 

of 50% or 0%. Stars represent the significance of the difference from chance. * p < 0.05; ** p 

< 0.01; *** p < 0.005. The Standard learning trials was a standard learning test using one 

real pair from the training phase and one foil pair created by combining shapes of two real 

pairs. It measures learning of item co-occurrence. The Spatial learning trials showed the same 

real pair twice. Once in its correct orientation and once rotated by 90°. It measures learning of 

the spatial arrangement of learned pairs. The Bias trials showed the same foil pair twice. Once 

horizontally and once vertically. There is no correct response, and it measures bias for one of 

the orientations. 

 

 

Discussion 

I found no learning of specific pairs in this setup. This suggests that the learning of temporally 

presented parallel pairs in Experiment 6a was not solely based on the temporal regularity but 

critically influenced by the observed motion. The instructions for Experiments 6a and 6b were 

identical, stating that shapes were moving in and out. Therefore, it can be assumed that partic-

ipants in 6b knew about the movement without directly observing it. 
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While in Experiment 6a, participants showed an overall bias to choose options aligned 

with the motion direction, in Experiment 6b, participants preferred options perpendicular to it. 

This suggests that in Experiment 6a, the overall bias was induced by the observed motion. The 

opposite bias observed in Experiment 6b might be due to the shapes being seen next to each 

other perpendicular to but not along the movement direction, i.e., due to the overall perceived 

shape arrangement. This suggests a flexible and parsimonious acquisition of biases based on 

the salience of the inducing features. In Experiment 6a, the feature apparently inducing the bias 

in 6b, overall shape arrangement, is present; however, it seems to be overshadowed by the 

feature of perceived motion. 

 

5.2 Implicit and Explicit Online Prediction in Spatio-Temporal VSL 

Traditional studies in visual statistical learning separate learning and testing into two different 

phases of the experiment. However, researchers have developed different online measures of 

VSL, trying to capture learning while it happens. In this sub-chapter, I first give an overview 

of the online measures previously employed in VSL research and then introduce a spatio-tem-

poral VSL-based online measure that shows strikingly different results for participants with 

explicit and implicit knowledge. 

Siegelman et al. (2018) introduced an online reaction time measure for temporal VSL 

based on self-paced progression through the familiarization phase. As usual in temporal VSL, 

participants see one shape after another on the screen, where some shapes form triplets. How-

ever, there is no fixed presentation rate, and participants move to the next shape via button 

press. The idea is that reaction times for predictable stimuli, the second and third shapes of a 

triplet, will be faster than those for unpredictable stimuli, the first shape of a triplet. Indeed, the 

authors found such an effect, which increased throughout the learning phase, constituting a 

measure of the trajectory of VSL. Crucially, this study utilized explicit task instructions, telling 
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participants about the presence of predictable patterns before the experiment. As discussed and 

empirically demonstrated in Chapter 2, explicit instructions can alter learning outcomes in SL. 

Specifically, it was previously demonstrated that in temporal VSL tasks, instructions are only 

irrelevant for very fast presentation rates (Bertels et al., 2015), which were not achieved in this 

study due to the self-paced nature of the experiment. Based on this, the measure introduced by 

Siegelman et al. (2018) is most likely a measure of explicit learning during VSL. 

Batterink and Paller (2017) introduced an EEG-based measurement of auditory statis-

tical learning based on neural entrainment. The main idea here is that rhythmically presented 

stimuli will cause a rhythmical brain response at the same frequency. This is obvious and can 

be explained as purely perceptual for the syllable frequency in an auditory SL task. However, 

neural entrainment on the triplet frequency can only be explained by triplet-based processing 

and, therefore, successful segmentation of the input stream. In several studies, this entrainment 

on the triplet frequency was demonstrated (Batterink et al., 2023; Batterink & Paller, 2017; 

Choi et al., 2020; Moreau et al., 2022), therefore establishing an online, EEG-based, task-less 

measurement of temporal statistical learning. The same general idea of using neural entrain-

ment as a measure for temporal SL has also been realized with intracranial recordings in patient 

populations (Henin et al., 2021; Sherman et al., 2023). 

Dale et al. (2012) used computer mouse movements as a measure for the learning of 

temporal sequences of global positions. They found that while participants could learn explic-

itly or implicitly, explicitness was correlated with predictive behavior. Similarly, Sznable et al. 

(2023) used a temporal VSL task and found again that predictive behavior, but also predictive 

brain responses, were specific to participants with explicit knowledge. 

All of the studies discussed above focused on measuring temporally defined structures 

in statistical learning. In contrast, the study presented in this sub-chapter employs a novel task 

to measure statistical learning of spatially defined structures online. 
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5.2.1 Experiment 7: An online prediction-based measure for stVSL 

Participants 

47 participants (19 female, mean age = 27.2, SD = 7.1) gave informed consent prior to the 

experiments. Participants were university students in Budapest, Hungary, who received 1,500 

Hungarian Forint for their participation. As in the previous experiments, participants conducted 

the experiment at home on their own devices. The study was approved by the Hungarian United 

Ethical Review Committee for Research in Psychology (EPKEB), and all participants provided 

informed consent. 

 

Materials 

This experiment used the same materials as Experiment 4a in Chapter 4.  

 

Procedure 

The basis of the procedure was the spatio-temporal VSL setup introduced for Experiment 4a in 

Chapter 4. Additionally, there was an ongoing prediction task, querying participants about their 

beliefs about which shapes would move in on the next step throughout the training phase (see 

Figure 5.4). Every two to four steps (i.e., animated motions), a blue arrow appeared outside the 

grid, next to one grid cell, pointing at it for 500 ms. This was immediately followed by a single 

shape from the set of 12 shapes in the same position as the blue arrow. Participants had to 

respond by pressing a button, indicating whether they believed that this shape would move into 

the visible grid from this position during the next step. The cue and query shape position was 

always chosen to be next to a currently partially presented shape pair along the movement 

direction so that the next shape moving in was always predictable. The shape presented outside 

the grid would move in on the next step in 50% of the trials. Overall, there were 72 queries, 

using each shape an equal number of times as correct and incorrect options. The query shape 
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presented outside the grid was always chosen to be a shape not currently visible in the grid. 

Participants had 1000ms to respond to the query. If they failed to respond within that time, a 

warning appeared telling them to respond more quickly on the following trials. For half of the 

participants, pressing "j" indicated believing that the shape would move in, and pressing "f" 

indicated believing that it would not move in. For the other 50% of the participants, this map-

ping was inverted. There was no fixed order of individual shapes or of correct/incorrect trials. 

However, the choice of the next query was biased for a higher probability of shapes that had 

appeared less frequently so far and for trial type (correct/incorrect) that had appeared less fre-

quently. As for the previous experiments, the "path" of participants, i.e. the specific stream of 

shape combinations, was created by ordering pre-existing scenes and moving them in and out 

of the visible 3x3 grid without segmentation cues. However, as the specific constraints used 

for the task (equal number of appearances of shapes, no use of the shapes present in the cur-

rently visible scene) strongly reduced the number of admissible paths, a loop created paths until 

one in line with the constraints was found for each participant. 

The training phase was followed by the same 2AFC test trials and post-experiment 

questionnaire used in Experiment 4a in Chapter 4. 

 

Results 

As with the previous experiments, participants were divided into explicit and implicit groups 

based on verbalized knowledge about the presence of pairs in the visual input. 31 participants 

were categorized as implicit, while 16 were categorized as explicit. The rate of explicitness of 

about 34% was much higher than in the previous experiments (mean = 12.3%, SD = 3.8, range 

= [5.4; 19.5]). This meant participants with implicit and explicit knowledge could be analyzed 

separately and compared to each other. The reason for the higher rate of explicitness is not 

clear. 
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2AFC Results. 2AFC trials were collapsed over the horizontal and vertical pairs, re-

ferred to as parallel pairs here, but analyzed separately for diagonal pairs. This was based on 

the assumption that the novel training phase (presenting a shape outside the grid every 2-4 

steps) would affect horizontal and vertical pairs in the same way while it has the potential to 

influence diagonal pairs differentially. Horizontal and vertical pairs are always presented out-

side the grid when the movement direction is parallel to their pair orientation. For diagonal 

pairs, by definition, the movement direction is always diagonal to them. This might be relevant 

as in Experiment 6a, we saw that the perceived direction of motion could bias learning towards 

pairs parallel to that direction. Therefore, to avoid overlooking a potential interaction of this 

effect with the effects of the presentation of shapes outside the grid in the novel setup, I opted 

to analyze diagonal pairs separately. 

The results (see Figure 5.5) showed that participants with explicit knowledge performed 

above chance for both parallel (M = 88.5, SE = 0.8, t(15) = 11.66, p < .001, d = 2.92, BF = 

1.7*106) and diagonal (M = 75.0, SE = 1.4, t(15) = 4.32, p = .002, d = 1.08, BF = 58.4) pairs. 

In contrast, participants with implicit knowledge performed above chance only for parallel (M 

= 57.9, SE = 0.5, t(30) = 2.84, p = .016, d = 0.51, BF = 5.4) but not for diagonal (M = 49.7, SE 

= 0.6, t(30) = -0.09, p = .932, d = 0.02, BF = 0.19) pairs. The performance of participants with 

explicit knowledge was significantly higher than the performance of participants with implicit 

knowledge for both parallel (t(35.08) = -7.08, p < .001, d = 2.07, BF = 3.4*105) and diagonal 

pairs (t(23.86) = -3.84, p < .001, d = 1.30, BF = 188.8) participants, as shown by two-sample 

t-tests. The reported significant tests are correct for multiple comparisons using the Holm-Bon-

ferroni method (Holm, 1979). 
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Figure 5.4 Experiment 7 Setup. Experiment 7 builds on the stVSL setup where the currently 

visible display is not independent of the previous one. Additionally, every 2-4 steps, partici-

pants need to make a prediction about whether or not a specific shape will move into the visible 

aperture on the next step. First, a cue in the form of a blue arrow appears outside the grid (seen 

in t1). Next, a shape appears at the same position (seen in t2), and participants need to indicate 

whether they believe that this shape will move in from there at the next step. The top panel 

directly shows what participants see in the experiment. The bottom panel is only for illustra-

tion purposes, as it highlights the underlying structure by color coding pairs. 
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Figure 5.5 Experiment 7 Results – 2AFC. The y-axis represents the participants' mean perfor-

mance on different 2AFC trials. Error bars represent the standard error. The dotted line indi-

cates the chance level of 50%. Stars represent the significance of the difference from chance. 

* p < 0.05; ** p < 0.01; *** p < 0.005. Colors indicate groups of participants with explicit or 

implicit knowledge. 

 

 

Online Prediction Task Results. As the main interest of this experiment was the trajectory of 

learning throughout the whole training phase contrasted for participants with explicit and im-

plicit knowledge, I decided to initially analyze the data by group-level signal detection theory 

(SDT). For this purpose, for every test trial, a group level d' was calculated separately for par-

ticipants classified as explicit and implicit. The calculation of d' was done using the psycho R 

package (Makowski, 2018) dprime function. These d' values were then analyzed in a linear 

regression with the timepoint of the trial as the predictor. The results (see Figure 5.6) showed 

that for explicit participants, time was a significant predictor of task performance as measured 

by group level d' (r2 = .22, F(1, 70) = 20.28, p < .001). In contrast, for implicit participants, 

time was not a significant predictor of task performance as measured by group level d' (r2 < 

.001, F(1, 70) = 0.002, p = .966). 
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This significant linear trajectory for the group of explicit participants clearly demon-

strates that explicit participants learn and that the group steadily increases its prediction perfor-

mance. However, this cannot be taken as evidence that individual participants also follow a 

linear trajectory in their prediction performance. As has been shown for other domains 

(Gallistel et al., 2004), a steady increase over time on the group level can result from step-like 

functions on the individual level with the step points distributed over time. 

 

 

 

Figure 5.6 Experiment 7 Results – Group Level SDT. The colored points visualize group level 

d' values for each point in time (= trial number) separately for participants with explicit and 

implicit knowledge. The colored lines visualize linear regression of these d' values by trial 

number, showing a significant increase over time only for participants with explicit knowledge. 

 

 

As an additional analysis, I ran a logistic regression for each individual participant, regressing 

the correctness of choice by time point. As shown in Figure 5.7, for explicit participants, this 

shows mostly positive slopes and a higher chance of correct responses at the end of the training. 
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This is not the case for participants with implicit knowledge. t-tests confirm that the slopes 

were, on average, different from zero for explicit (M = 0.013, SE = 0.003, t(14) = 4.05, p = 

.001, d = 1.05, BF = 33.3) but not implicit participants (M = 0.000, SE = 0.002, t(28) = -0.043, 

p = .966, d = 0.008, BF = 0.20). Furthermore, I correlated the participants' probability of correct 

choice on the last trial, as predicted by the logistic regressions, with the participants' perfor-

mance on the 2AFC task. For participants with explicit knowledge, this showed a large signif-

icant correlation between choice probability and 2AFC parallel trials (r = .65, p = .008) and a 

medium non-significant correlation between choice probability and 2AFC diagonal trials (r = 

.28, p = .315). For participants with implicit knowledge, this showed small, non-significant 

correlations for both 2AFC parallel trials (r = .12, p = .521) and 2AFC diagonal trials (r = .06, 

p = .774). 

 

 

Figure 5.7 Experiment 7 Results – Participant Level Analysis. The faintly colored lines visual-

ize each participant's correct responses logistically regressed by time. The stronger colored 

lines represent group averages of those regressions. In line with Figure 5.6, this again suggests 

an increase in prediction performance over time only for participants with explicit knowledge. 
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Discussion 

The results of this experiment demonstrated that while both participants with explicit and im-

plicit knowledge could learn in this setup according to a standard 2AFC familiarity task, only 

participants with explicit knowledge could apply their knowledge in an online prediction task. 

This is in line with similar results for statistical learning of temporally defined patterns dis-

cussed above. Additionally, for participants with explicit knowledge, their prediction perfor-

mance was correlated with their 2AFC performance. 

 

5.3 General Discussion 

The experiments presented in the current chapter demonstrated connections between the re-

search on abstraction and generalization in VSL presented in Chapters 2 and 3 and the research 

on spatio-temporal VSL presented in Chapter 4. We see that once we leave the most narrowly 

controlled setups typical for VSL research, top-down, bottom-up interactions naturally emerge. 

Furthermore, we again see that the explicitness of knowledge acquired during visual statistical 

learning is a critical moderator of how this knowledge can be applied to visual input. Overall, 

this chapter provides further support for the central idea of this thesis, that what is usually called 

visual statistical learning needs to be understood as part of the overall human unsupervised 

learning system, operating by combining lower-level spatio-temporal co-occurrence statistics 

with higher-level top-down biases, combining the available features flexibly across levels. 

 

5.3.1 Higher-level Spatio-temporal Features in VSL 

The results showed that while in Experiment 6a, participants had an overall bias to choose 

options aligned with the motion direction, in Experiment 6b, participants preferred options per-

pendicular to it. This suggests that in Experiment 6a, the observed motion induced the overall 

bias. The opposite bias observed in Experiment 6b might be due to the shapes being seen next 
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to each other perpendicular to but not along the movement direction, i.e., due to the overall 

perceived shape arrangement. This demonstrates a flexible and parsimonious acquisition of 

biases based on the salience of the inducing features. In Experiment 6a, the feature that is ap-

parently inducing the bias in 6b, overall shape arrangement, is present; however, it seems to be 

overshadowed by the feature of perceived motion. 

As discussed in the introduction of this chapter (5.1), the influence of higher-level fea-

tures of the visual input, transcending the item-item co-occurrence statistics usually studied in 

VSL experiments, has so far been largely neglected in VSL research. However, there are a few 

exceptions. While an overall shape arrangement has been utilized in a VSL study before (Jun 

& Chong, 2016), there it was part of a predictable sequence, therefore being subject to statisti-

cal learning in the classical sense itself. In the current study, this overall feature of the input is 

used in a way not suitable for statistical learning to investigate how it will then interact with 

statistical learning proper. Another relevant previous study focused on the interaction of statis-

tical learning and statistical summary perception (Zhao et al., 2011), a type of visual processing 

extracting summary statistics over an input set. It was found that having participants focus on 

summary statistics will impede statistical learning and vice versa. The overall motion direction 

utilized in the current study could be considered a summary statistic. However, critical differ-

ences in how this is utilized in the studies remain. For Zhao et al. (2011), the summary statistics 

are computed over the same input feature that encodes the item identity (the orientation of a 

line), this is not the case for the motion direction in the current study. Furthermore, the current 

study can, if at all, be only considered a fringe case of statistical summary perception, as all 

shapes follow the same motion direction at a given point in time; i.e., there is no variance at 

all. These differences highlight how this previous study and the current one are complementary 

in their design and scope, focusing on different aspects of interactions of low-level co-occur-

rence and higher-level group statistics. Interestingly, their differences generate a conceptual 
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space of possible studies which could be conducted by varying the parameters of (1) variance 

in summary statistics, (2) overlap of features used for summary statistics and item identity, and 

(3) guiding participants attention to different aspects (as Zhao et al. did). 

A phenomenon in the object recognition literature related to the current study is aper-

ture viewing (Morgan et al., 1981). In aperture viewing, an object or pattern is moving behind 

a narrow slit so that only small parts of it are visible at any given point in time. It has been 

shown that people are generally able to recognize known objects and patterns in a range of slit 

sizes and movement speeds. Whereas early work suggested that this effect is solely based on 

low-level integration of enduring activation (retinal painting), it has later been shown that, at 

least in some circumstances, higher-level perceptual mechanisms need to be recruited (Morgan 

et al., 1981). A newer version of research in this area investigates object perception using min-

imal videos (Ben-Yosef et al., 2020). There, it was shown that objects could be recognized in a 

video recording that is strongly degraded in both the spatial (down-sampling and/or cropping) 

and the temporal (removing video frames) domains. At the point of degradation termed mini-

mal video, any further reduction of spatial or temporal information leads to a substantial drop 

in object identification accuracy and image interpretability. This highlights how spatial and 

temporal information interact crucially in object perception. While this type of research focuses 

on perception, the current study investigates learning. Future studies could combine both as-

pects in investigating how the interaction of spatial and temporal information in learning relates 

to the interaction of spatial and temporal information in later recognition. 

It should be noted that the higher-level features used in the current study, overall motion 

direction and overall shape arrangement, might be only two examples of relevant features that 

could influence visual statistical learning. Other features, such as presentation rates, speed of 

motion, complexity and amount of stimuli, and others, could influence VSL on their own as 

well as in interaction with each other and the lower-level statistics. 
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5.3.2 Explicitness and Prediction in spatio-temporal VSL 

In Experiment 7, I showed that while both participants with implicit and explicit knowledge 

can learn in this novel setup according to a classic 2AFC measure, only participants with ex-

plicit knowledge can use their knowledge in an online prediction task. These results for spa-

tially defined patterns, presented in the spatio-temporal VSL setup, are in line with previous 

results from purely temporal VSL showing an association between explicitness of knowledge, 

prediction performance, and predictive brain activity (Dale et al., 2012; Sznabel et al., 2023). 

Furthermore, the finding that participants with implicit knowledge perform above chance for 

the 2AFC but not the prediction task mirrors previous results in temporal VSL, showing differ-

ential behavioral outcomes for different measures of VSL within participants (Bays et al., 

2016). The results of Experiment 7 and the related results in VSL research discussed here can 

be seen as instances of a more general phenomenon of dissociation of different measures of 

learning in the memory literature (Ingram et al., 2012; Jurjut et al., 2017; Kuchibhotla et al., 

2019; Yonelinas, 2002) often neglected when summarizing results over several VSL studies.  

It should be noted that in my experiment, the participants with explicit knowledge 

showed a significantly higher level of learning for the 2AFC trials than the participants with 

implicit knowledge. This difference could, in principle, explain the difference in prediction 

behavior. Unfortunately, the sample sizes of the current study make a matched sample analysis, 

as in Chapters 2 and 3, unpractical for the current study. 

The current results are also in line with the results of Experiments 1a-c and 2a-b in 

Chapter 2, demonstrating a difference in how participants with explicit and implicit knowledge 

can apply their acquired knowledge. While in Chapter 2, we saw that participants with explicit, 

but not implicit, knowledge can use it for generalization, here we see that participants with 

explicit, but not implicit, knowledge can use their knowledge for prediction. Building on the 

finding of Chapter 3 that participants with implicit knowledge are able to generalize after a 
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phase of asleep consolidation hints at the possibility that the same might be the case for pre-

diction. That is, the transformation of implicit knowledge during sleep might change it into a 

representational format suitable for prediction. However, this is speculative as, in contrast to 

the case of generalization, there is no established mechanism of representational change during 

sleep that could account for prediction.  
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CHAPTER 6 

 

General Discussion 

 

This dissertation set out to achieve two goals. The first goal was a reconceptualization showing 

that what is canonically called visual statistical learning is part of a more extensive, hierarchi-

cally structured system of human unsupervised learning in which both bottom-up and top-down 

influences play an important role. The second goal was the development of a joint spatio-tem-

poral visual statistical learning paradigm that enables systematic investigation of how the tem-

poral and spatial statistics of the input interact in unsupervised learning. Overall, the findings 

presented in this dissertation support a view of visual statistical learning as an interaction of 

lower-level spatio-temporal co-occurrence statistics and higher-level top-down biases. Therein, 

available features across levels are flexibly combined to achieve a congruent and comprehen-

sive yet parsimonious interpretation of the world. 

 To summarize the main results of this dissertation, I identified three types of higher-

level biases. First, pre-existing biases that cannot be explained by properties of the experiment, 

such as a bias of diagonally over cardinally oriented structures (Chapter 4, Experiments 5a-c) 

and a bias of horizontally over vertically oriented structures (Chapters 2, Experiments 2b). 

Second, biases based on the abstraction of learned low-level co-occurrence statistics, such as a 

structural transfer or structural novelty effect (Chapters 2 and 3, Experiments 1a-c, 2a-b, 3a-b). 

Third, biases based on observed higher-level spatial or temporal input features, such as a per-

ceived overall motion direction or shape arrangement (Chapter 5, Experiments 6a-b). Addition-

ally, two critical moderators of this hierarchical learning system were identified: explicitness 

and consolidation of knowledge. The explicitness of knowledge influenced how it could be 

applied to novel input for generalization (Chapters 2, Experiments 1a-c, 2a-b) or prediction 
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(Chapters 5, Experiment 7). Consolidation of knowledge enabled generalization of learned 

structures even without explicitness (Chapter 3, Experiment 3a, 3c). Finally, the research pre-

sented in Chapters 4 and 5 demonstrated that participants used the temporal statistics of the 

input in learning spatially defined patterns and identified essential moderators of this process, 

such as perceived motion. 

 

6.1 Connections to Previous Research 

The studies presented in this dissertation are related to a broad range of research from within 

and outside the statistical learning literature. Here, I will summarise important connections 

already discussed in the previous chapters and introduce novel connections that concern aspects 

of the research spanning multiple chapters. 

 

6.1.1 Consolidation and Statistical Learning 

Previous research found mixed results for the effect of consolidation on statistical learning (see 

Chapter 3.1.2), with some studies showing that asleep or awake consolidation helps increase 

or retain test performance. The effect of consolidation, especially sleep-based, on abstraction 

has been demonstrated outside the field of statistical learning (see Chapter 3.2.1). The experi-

ments conducted for this dissertation showed that sleep-based consolidation also plays a critical 

role in abstraction from representations built during visual statistical learning and, therefore, in 

the domain of unsupervised learning. Following the complementary learning systems (CLS) 

framework (McClelland et al., 1995) and recent additions to it (Schapiro, Turk-Browne, et al., 

2017), this might be realized by an interaction between the hippocampus and neocortex or 

between different learning systems within the hippocampus. However, although suggesting a 

similar mechanism for my findings and previous findings on CLS seems natural, this does not 

automatically mean that the same neural substrate implements both. Only studies targeted at 
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the neural substrate of the represented chunks and more abstract, structural representations 

could answer such questions. 

 The explanation given for my findings in Chapter 3 suggests that both the structural 

novelty effect and the sleep-based generalization found for participants with implicit 

knowledge can be explained by the representational overlap of the chunk representations. The 

idea is that while in the absence of consolidation, the representational overlap leads to proactive 

interference hindering the learning of similar pairs, after consolidation, the shared structure has 

been abstracted and now guides future learning. However, confirming this interpretation would 

require further studies. Empirical studies employing neural measures that allow tracking the 

representations and representational similarities of shapes and pairs during learning and con-

solidation could test this interpretation. Furthermore, existing models of CLS mechanisms 

(O’Reilly et al., 2014; Schapiro, Turk-Browne, et al., 2017) could potentially be extended to 

capture structure-based novelty effects. 

 Interestingly, while the proactive interference (Kliegl & Bäuml, 2020) reported for par-

ticipants with implicit knowledge was released by asleep consolidation in my experiments, this 

was not significant for the retroactive interference (Dewar et al., 2007) reported for participants 

with explicit knowledge. This is in contrast to previous results showing a release from retroac-

tive interference by asleep consolidation (Abel et al., 2023; Ellenbogen et al., 2006) for declar-

ative memory. However, due to the smaller number of participants with explicit knowledge in 

my studies, this comparison might have been underpowered, and more targeted studies are 

needed to clarify these findings. 

 How can the disparate findings on the influence of consolidation on statistical learning 

be reconciled? Using the alternating serial reaction time (ASRT) task, it was shown that learn-

ing specific simple chunks happens online while learning more complex higher-order rules 

depends crucially on offline phases (Quentin et al., 2021). Higher-order, in this context, means 
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second- or third-order temporal transitions between specific elements and, therefore, non-ad-

jacent associations as compared to simple adjacent transitions. These higher-order rules are, 

thus, directly observable in the input and not latent factors such as the underlying orientation 

used for the experiments presented in Chapters 2 and 3 of this dissertation. Furthermore, asleep 

consolidation has been demonstrated to have an effect on statistical learning using probabilistic 

input as compared to deterministic input (within chunk conditional probabilities of 1) (Durrant 

et al., 2013, 2011) on the cross-modal transfer of statistical learning (Durrant et al., 2016), and 

on statistical learning in the presence of interference (McDevitt et al., 2022). These findings, 

combined with my results presented in Chapters 2 and 3, might suggest that the critical bound-

ary for consolidation dependence in unsupervised learning is not just between observable (sta-

tistical learning) and more latent (structure learning) features. Instead, consolidation might be 

critical for complex (non-adjacent, cross-modal, abstract, probabilistic, or interference-sub-

jected) but not simple (adjacent, unimodal, specific, deterministic, and interference-free) regu-

larities. 

 

6.1.2 Explicitness and Statistical Learning 

Previous research in VSL debated whether explicit task instructions - mentioning the presence 

of pairs, triplets, or any fixed item combinations - would lead to different learning outcomes. 

While some authors suggested that explicit instructions do not matter (Arciuli et al., 2014), 

others have demonstrated that this strongly depends on context factors (Bertels et al., 2015). In 

short, it was shown that explicit instructions do not matter when using extremely short presen-

tation times but do matter for timings more typically used in VSL research. Another study that 

failed to find any VSL effect for their setup without explicit instructions found a strong effect 

in a sample that received instructions (Himberger et al., 2019). All of these contributions fo-

cused on how explicit instructions change performance quantitatively, i.e., more or less 
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learning. In contrast, the results of Experiment 1c in Chapter 2 of this dissertation showed a 

critical effect of explicit instructions on both quantitative and qualitative behavior. Explicit 

instructions led not only to higher levels of learning but also to generalization. Furthermore, 

comparing these results to those of the participants reaching explicitness on their own in Ex-

periment 1a demonstrates that similar behavior can occur independently of whether explicit 

knowledge was achieved by instructions or spontaneously. This is similar to recent reports in 

the field of reinforcement learning, where explicit instructions change behavior qualitatively 

in a way that is observed spontaneously in only a few participants (Castro-Rodrigues et al., 

2022). 

 Furthermore, the results reported in this dissertation highlight how critical it is to con-

sider the explicitness of knowledge as a covariate in SL research. While many studies in SL 

simply assume implicitness of knowledge, the current results suggest that the sample will often 

include a subsample of participants who develop explicitness of knowledge. This is highly 

problematic as I have found strong quantitative and qualitative differences between participants 

with explicit and implicit knowledge. Not identifying the explicit subsample can lead to the 

computation of statistical artifacts, e.g., group means that do not meaningfully represent the 

sample, which might mask existing effects. While this is already problematic for quantitative 

differences, it can be even worse for qualitative differences. In the case of Experiment 1a in 

Chapter 2 of this dissertation, not considering the explicitness of knowledge as a covariate 

would have masked both the generalization behavior of participants with explicit knowledge 

and the structural novelty effect of participants with implicit knowledge. In short, my conclu-

sion is that explicitness matters and should be tracked in SL research. 
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6.1.3 Hierarchies in Statistical Learning 

Previous studies argued for multiple ways in which statistical learning could be a part of a 

hierarchical learning system. It was recently suggested that statistical learning competes with 

rule learning in explaining perceptual input (Maheu et al., 2022). The hierarchical aspect of 

this interpretation is that both statistical learning and rule rearning are situated at a lower level, 

working in parallel, while the higher level of the hierarchy realizes an arbitration mechanism, 

which decides whether statistical or rule learning is fitting for the current input. This is in con-

trast to my interpretation, according to which forms of learning based on abstraction, such as 

rule learning, are situated at a higher level of the hierarchy than statistical learning. It should 

be noted that my view of statistical and rule learning as different levels of a hierarchy does not 

suggest a simple feed-forward hierarchy in which the output of a statistical learning process 

feeds into a rule learning process. Instead, as discussed in the Introduction chapter and empir-

ically demonstrated in Chapters 2 and 3, there is an ongoing interaction between levels of ab-

straction in which each level constraints connected levels while simultaneously being con-

strained by them. 

It was also recently suggested that statistical learning leads to a compositional hierarchy 

of representation (Lee et al., 2021). According to this view, learned chunks, which consist of 

multiple elements such as shapes, can themselves become elements for creating larger chunks. 

For example, a quadruplet of shapes can be represented as consisting of two pairs of shapes. In 

this view, which parts of a chunk should be represented as smaller chunks flexibly depends on 

the experience with the input. For example, if I have learned the shape pair AB before, I might 

represent the quadruplet ABCD as consisting of the pairs AB and CD. This idea of a hierarchy 

of composition is neither the same as my proposed hierarchy of abstraction nor is it at odds 

with it. Both are relevant for the representation of real-world visual input. An overarching 
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understanding of unsupervised visual learning will need explain how this system can realize 

both a hierarchy of composition and a hierarchy of abstraction simultaneously. 

Finally, for temporal visual and auditory statistical learning, it was demonstrated via 

intracranial recordings that the structure of the input stream was represented at different levels 

along the neural processing hierarchy (Henin et al., 2021). While transitional probabilities were 

most strongly represented in modality-specific early sensory regions, such as areas in the oc-

cipital cortex and superior temporal gyrus (STG), information about item position and identity 

was most strongly represented in not modality-specific associative regions, such as inferior 

frontal gyrus (IFG), anterior temporal lobe (ATL) and the hippocampus. In principle, the ap-

proach chosen by Henin et al. (2021) could be extended to localizing the neural substrate of 

more abstract features learned over several chunks, such as the ones used in my studies. How-

ever, Henin et al.'s neural frequency tagging methodology is naturally suited for measuring the 

learning of temporal but not spatial regularities. This is the case as it measures the power of the 

frequency spectrum at the chunk frequency, which is not defined for classical spatial VSL. 

Therefore, alternative measures would be necessary to meaningfully combine these two lines 

of research. 

 

6.1.4 Eye Movements and Statistical Learning 

Recent research found connections between statistical learning and eye movements (Arato et 

al., 2023; Zolnai et al., 2022). For the temporally defined alternating serial reaction time 

(ASRT) task, it was shown that eye movements were a signature of anticipating upcoming 

predictable stimuli (Zolnai et al., 2022). For spatially defined visual statistical learning, it was 

shown that learning the pairs of shapes embedded in visual scenes leads to more within-pair 

transitions of fixations (Arato et al., 2023). This eye-movement-based signature of visual sta-

tistical learning was also correlated with the performance in a classical 2-alternative forced 
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choice (2AFC) familiarity task. These findings naturally lead to the question of how eye move-

ments might be related to the VSL phenomena studied in this dissertation. This subchapter will 

discuss potential connections, highlighting possible future avenues of research. 

First, eye movements are a potential explanation for the preference for horizontal pairs 

found in Chapter 2, Experiment 2b. There, I found that in the absence of any induced bias to 

an orientation, participants prefer horizontal structures to vertical ones. As discussed in that 

chapter, preferences for horizontality have been demonstrated for several domains, including 

visual processing (Lim & Sinnett, 2012), face perception (Balas et al., 2015; Dakin & Watt, 

2009), and, importantly, direction of spontaneous saccades as captured with eye-tracking 

(Foulsham et al., 2008; Gilchrist & Harvey, 2006; Tatler & Vincent, 2008; Van Renswoude et 

al., 2016). In principle, this bias for saccade direction alone could be enough to account for 

preferential learning of horizontal pairs as more spontaneous horizontal saccades would natu-

rally bias attention to horizontal associations, i.e., a participant will more often see the shapes 

of a horizontal pair in succession as compared to the shapes of a vertical pair. Such an effect 

could, for example, be investigated with novel studies correlating spontaneous horizontal eye 

movements with learning of horizontal and vertical pairs or with studies experimentally ma-

nipulating eye movement patterns. 

Second, eye movements could also play a role in transferring learned structure de-

scribed in Chapters 2 and 3. If within-pair fixation transitions are becoming increasingly more 

likely throughout learning, as demonstrated by Arato et al. (2023), and only pairs of one orien-

tation (horizontal or vertical) are used, such as in the first training phase of the experiments of 

Chapters 2 and 3, we would expect a high number of fixation transitions along this one orien-

tation at the end of the first training phase. If this biased transition pattern is preserved for the 

context of an experiment and therefore also present in the second learning phase, this would 

constitute a mechanistic explanation of the found generalization pattern. However, how would 
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this relate to the implicit participants' performance pattern and the observed effect of consoli-

dation? The absence of generalization for participants with implicit knowledge in the immedi-

ate transfer would not be surprising based on the findings of Arato et al., as they found that for 

implicit participants, the eye-movement effect takes longer to develop than for explicit partic-

ipants and only shows after more than 100 trials, which is longer than the first training phase 

in the Experiments in Chapters 2 and 3. Furthermore, a potential effect of eye movements does 

not need to be at odds with the memory-transforming effects of consolidation suggested in the 

previous chapters, as they could work alongside or in interaction with eye-movement-based 

effects. 

Third, in Chapters 4 and 5, we saw strong effects of perceived motion and motion di-

rection in visual statistical learning, which could also be connected to eye movements. The 

motion might lead to more transitions along the perceived motion direction, leading both to a 

general effect of motion (Chapter 4, Experiment 5a-c) and biases for specific directional asso-

ciations based on biased motion direction (Chapter 5, Experiment 6a). The effect of a bias 

towards the overall shape arrangement in the absence of motion (Chapter 5, Experiment 6b) 

could also be related to a transfer of transition patterns from the initial training. 

We can see that there are a multitude of potential connections between eye movements 

and the findings of this dissertation. However, firm statements on such connections will require 

more research that employs eye-tracking to VSL transfer learning and spatio-temporal VSL 

paradigms, potentially alongside experimental manipulations that bias the direction of fixation 

transitions. 

 

6.1.5 Object-Like Representations in Statistical Learning 

It was previously shown that representations of chunks arising during visual statistical learning 

have properties of object representations, leading to the idea that VSL leads to essentially 
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object-like representations (Fiser & Lengyel, 2022). First, it was demonstrated that chunks 

learned during VSL show object-based attention (Lengyel et al., 2021), suggesting that the 

shapes making up the chunks are represented as one unified object after learning. Second, 

purely statistically defined chunks learned in the visual domain showed zero-shot generaliza-

tion to the haptic domain (Lengyel et al., 2019). In short, after learning the co-occurrence sta-

tistics of shapes based on VSL, participants interacted with them manually as if they were solid 

objects within but not across chunk boundaries. Third, it was demonstrated that spatial VSL 

reduces the perceived numerosity of multi-chunk scenes, again suggesting that chunks are per-

ceived as single unified objects (Zhao & Yu, 2016). Taken together, we see that chunks formed 

during VSL show several important properties associated with object perception and cognition. 

 The results presented in Chapters 2 and 3 add to this evidence by demonstrating for 

VSL chunks a further hallmark of object cognition: nested organization of representations into 

categories or concepts. Objects are not simply represented as an unordered set of elements, but 

their representation is structured into higher-level categories based on their common underlying 

structure or shared features (Ashby & Maddox, 2005; Richler & Palmeri, 2014). Similarly, as 

demonstrated by my experiments, the chunks learned during VSL can be nested into represen-

tations of their shared structures, such as the category of horizontal pairs, which in turn is used 

to interpret novel input. This adds to the existing evidence suggesting that statistical learning 

is a vehicle for acquiring object-like representations. 

  

6.2 Limitations and Future Directions 

The findings presented in this dissertation demonstrate that visual statistical learning should be 

understood as part of a larger unsupervised learning system. I suggested that this builds on an 

interaction of lower-level spatio-temporal co-occurrence statistics and various higher-level fea-

tures. However, for every answer provided by this research, new questions emerged. 
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 What exactly is represented at the "higher level"? The effects found in Chapters 2 and 

3 could be explained by a general bias for one orientation, i.e., horizontality, or by a more 

specific representation of a structure, i.e., horizontal pair. Such differences could be investi-

gated in experiments studying the transfer from oriented pairs to triplets or vice versa. Further-

more, the chunk orientation is only one feature. How do the current findings generalize to other 

features? A challenge here is to define chunks with features that can be abstracted, that are not 

obviously perceived from the input without learning the chunks, and that have two versions 

that are in some sense orthogonal to replicate the switch from novelty effect to generalization. 

 Another open question is: what is the time course of learning and generalization within 

the different learning phases? The current studies on transfer learning had a strict separation 

between training and test phases, so the collected data cannot answer these questions. A chal-

lenge for future studies is to devise a paradigm where implicit learning in spatial VSL can be 

captured online. The current thesis successfully developed such a measure for explicit learning, 

as the prediction results for participants with explicit knowledge in Experiment 7 were highly 

correlated with their offline 2AFC performance. However, this was not the case for participants 

with implicit knowledge. Previous studies developing online measures for VSL focused on the 

temporal domain (Batterink & Paller, 2017; Henin et al., 2021; Quentin et al., 2021; Sherman 

et al., 2023; Zolnai et al., 2022) and partially used explicit instructions (Siegelman et al., 2018). 

However, these measures developed for capturing the learning of temporal statistics cannot be 

directly applied to learning spatial statistics. Developing such a measure for spatial VSL is, 

therefore, a critical challenge for advancing VSL research. 

 As mentioned above (6.1.1), although the findings on the role of consolidation in ab-

straction presented in this dissertation mimic results of the complementary learning systems 

framework, this does not show that the same neural mechanisms and substrate are at play. Fu-

ture studies tracking neural representations are necessary for testing this interpretation. 
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 Similarly, the suggested links (6.1.4) between my findings and eye movements so far 

are speculative, although in line with previous results. These interpretations can only be tested 

by the direct application of eye-tracking to the paradigms introduced in this dissertation.  

 The spatio-temporal VSL paradigm has the potential for extension into several direc-

tions. Giving participants control over the direction of movement would extend SL research 

toward an active learning framework, as previously demonstrated with a gaze-contingent VSL 

paradigm (Arato et al., 2023). Such a setup lends itself to investigating how what participants 

already learned interacts with their exploration behavior. Furthermore, biasing the visual envi-

ronment to contain more regularities or specific types of regularities in some regions opens an 

avenue to investigate interactions of local spatial regularities (i.e., what co-occurs with what) 

and global spatial regularities (i.e., what occurs where). This has the potential to provide a 

natural link to both the abstraction/generalization experiments presented in Chapters 2 and 3 

of this dissertation and to research on the learning of global spatial (and conceptual) spaces 

such as cognitive maps (Behrens et al., 2018; Tolman, 1948). Naturally, when abstraction and 

interactions between abstract and specific information come into play, the spatio-temporal VSL 

paradigm could and should be extended to multi-session consolidation versions, given my pre-

vious findings on the role of consolidation in abstraction. 

 

6.3 Conclusions 

The research presented in this dissertation established meaningful connections between what 

is usually called statistical learning and the learning of more abstract features, therefore estab-

lishing a connection between previously disparate lines of research. The results showed im-

portant interactions between lower-level co-occurrence statistics and higher-level biases, 

providing evidence that the ecological role of statistical learning cannot be understood by only 

studying it in isolation. Furthermore, by developing a spatio-temporal VSL paradigm, the 
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research presented in this dissertation joined two previously largely disparate lines of research 

within statistical learning. The results showed not only that temporal statistics are used in the 

implicit learning of spatial patterns but also that interactions arise that would not be predicted 

by studying the learning of spatial and temporal SL in isolation. Additionally, the dissertation 

research emphasized qualitative differences based on the explicitness of knowledge in unsu-

pervised learning. It, thus, supports the notion that tracking explicitness in SL research is es-

sential. Taking all these findings together, this dissertation demonstrates that the narrow limi-

tation and control that enabled the initial success of SL research need to be carefully and incre-

mentally overcome to understand the role of SL in the overall human cognitive system. It does 

so by introducing two new VSL paradigms that enable novel, systematic ways of investigating 

the human unsupervised learning system.  
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Appendix 

 

A. Post-Experiment Questionnaire 

After completing the test phase, participants in all experiments gave written responses to sev-

eral open questions. Assessment of explicit knowledge was based on the responses to: 

1. Please explain with your own words what you think the experiment was about. 

2. In the first part of the experiment, where you only passively watched the screen: Did you 

notice any regularities in how the shapes were arranged? If yes, please describe them. 

Any references to fixed pairs or reappearing combinations of shapes were counted as evidence 

for explicit knowledge. 

 

B. Consolidation Studies: Details on Sleep and Time-of-Day 

In order to ensure that participants had overnight sleep during Experiments 3a and 3c and that 

they did not sleep during the day in Experiment 3b, several constraints and checks were imple-

mented. First, participants were not taken from the full prolific pool but restricted to several 

European countries within the same time zones. Country of residence is one of the attributes 

of participants that prolific.co verifies. In order to roughly approximate the geographic distri-

bution of participants in Experiment 1a (see Figure B.1), I chose countries from two time zones. 

GMT±00:00 (Countries: UK and Portugal) and GMT+01:00 (Countries: Germany, France, 

Spain, Czech Republic, Denmark, Hungary, Italy, Netherlands, Poland, Slovenia, Switzerland). 

Second, as I did not expect Prolific’s residence information to be perfectly predictive of where 

participants were while they conducted the experiment, participants were asked what the cur-

rent time at their location was. Third, at the start of the second part of the experiment, partici-

pants were asked how much they slept between the first and second parts. This was used to 

exclude participants from Experiment 3b who slept during the day. 
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Figure B.1 Experiment 1a - Country and Time Zone. The top panel shows the country of res-

idency for the participants of Experiment 1a, used as a proxy for the time zone they were in, 

visualized in the bottom panel. Participants for the subsequent consolidation studies were cho-

sen from the countries of the most frequent time zones: GMT±00:00 (Countries: UK and Por-

tugal) and GMT+01:00 (Countries: Germany, France, Spain, Czech Republic, Denmark, Hun-

gary, Italy, Netherlands, Poland, Slovenia, Switzerland). 
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C. Matched Sample Analysis 

As reported in the main text of Chapters 2 and 3, explicit participants show higher average 

learning in the first learning phase, which could be what enables the generalization of the 

learned structure. To test this idea, I conducted a matched sample analysis (Ho et al., 2007). 

The general idea of this analysis is to create a sub-sample of the implicit participants that per-

form like the explicit participants for the trials of the first training phase. 

For all experiments, in a first step, I ran six applicable matching algorithms imple-

mented in the MatchIt R package (Ho et al., 2011). The six matched implicit samples were then 

compared to the original explicit sample according to four metrics: standardized mean differ-

ence, variance ratio, mean of the empirical cumulative density function, and maximum of the 

empirical cumulative density function. All values for all experiments can be seen in Supple-

mentary Tables 1-4. “Unbalanced” denotes the values for the full, non-matched implicit sam-

ple. All values for the used matching methods are evaluated as an improvement from those 

values. Std. Mean Diff. describes how far the mean of the matched sample is from the compar-

ison sample (explicit participants); values closer to zero are better. The variance ratio is the 

ratio of the variances of the matched and the comparison sample; the best possible value is 1. 

The eCDF (empirical cumulative density function) contains more information than the mean 

and variance ratio as they capture the whole distribution of values. Two commonly used simple 

metrics based on the eCDF are the mean and maximum difference of the eCDFs of the matched 

and comparison group. Generally, values closer to zero are better. The best-fitting matching 

algorithm was not exactly aligned for all experiments. For consistency reasons, I chose the 

overall best-fitting method for all experiments: nearest neighbor matching with replacement. 
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Experiment 1a Results 

The matched sample showed a pattern similar to that of the original full sample in the second 

training phase. A 2x2 ANOVA using the novel and same structure pairs for the original explicit 

and the matched implicit data showed a significant interaction (F(1, 87) = 8.53, p = 0.004, BF 

= 10.7, ηp
2 = 0.09) and post-hoc comparisons showed a significant difference between novel 

and same structure trials for the matched implicit data (p = 0.012; BF = 3.6). This analysis 

suggests that the difference between the two groups is not based on different learning strengths. 

 

Experiment 3a Results 

As in Experiment 1a, the matched sample showed the same pattern as the full sample. As a 

critical analysis, we can see that for the matched implicit sample, there is a significant differ-

ence between learning pairs of the same and of the novel structure (d = 0.98, t(20) = 4.51, p < 

0.001, BF = 127), suggesting generalization of the structure. 

 

Experiment 3b Results 

The matched sample showed a similar pattern as the full sample. Critically, we can see that for 

the matched implicit sample, there is no significant difference between learning pairs of the 

same and of the novel structure (d = 0.29, t(19) = -1.29, p = 0.214, BF = 0.59), suggesting no 

generalization of the structure. 

 

Experiment 3c Results 

As in Experiment 1a, the matched sample descriptively showed the same type of pattern as the 

full sample. However, the critical analysis of the difference between learning pairs of the same 

and of the novel structure for the matched implicit sample failed to reach significance (Mdiff = 

8.66, d = 0.22, t(22) = 1.05, p = 0.304, BF = 0.46). 
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Supplementary Table 1 

Experiment 1a - Overview of Balance Metrics for the Used Matching Algorithms 

Matching Method Std. M. Diff. Var. Ratio eCDF mean eCDF max 

Unbalanced 0.486 2.92 0.169 0.358 

NN with replacement -0.002 0.95 0.003 0.059 

NN without replacement 0.078 1.31 0.026 0.206 

Optimal pair matching 0.078 1.31 0.026 0.206 

Optimal full matching -0.018 1.05 0.012 0.059 

Coarsened exact matching -0.021 1.12 0.021 0.118 

Subclassification -0.049 1.19 0.020 0.059 

 

 

Supplementary Table 2 

Experiment 3a - Overview of Balance Metrics for the Used Matching Algorithms 

Matching Method Std. M. Diff. Var. Ratio eCDF mean eCDF max 

Unbalanced 1.125 2.909 0.273 0.548 

NN with replacement 0.432 2.424 0.105 0.429 

NN without replacement 0.103 1.089 0.030 0.238 

Optimal pair matching 0.432 2.424 0.105 0.429 

Optimal full matching 0.112 1.079 0.033 0.238 

Coarsened exact matching 0.142 1.130 0.037 0.294 

Subclassification 0.248 1.175 0.060 0.238 

 

 

 

C
E

U
eT

D
C

ol
le

ct
io

n



134 

 

Supplementary Table 3 

Experiment 3b - Overview of Balance Metrics for the Used Matching Algorithms 

Matching Method Std. M. Diff. Var. Ratio eCDF mean eCDF max 

Unbalanced 1.067 3.284 0.290 0.49 

NN with replacement 0.293 2.260 0.079 0.30 

NN without replacement 0.043 0.950 0.018 0.25 

Optimal pair matching 0.293 2.260 0.079 0.30 

Optimal full matching 0.068 1.073 0.023 0.25 

Coarsened exact matching 0.043 1.161 0.023 0.25 

Subclassification 0.089 1.106 0.039 0.25 

 

 

Supplementary Table 4 

Experiment 3c - Overview of Balance Metrics for the Used Matching Algorithms 

Matching Method Std. M. Diff. Var. Ratio eCDF mean eCDF max 

Unbalanced 0.819 5.352 0.222 0.494 

NN with replacement 0.450 3.006 0.106 0.391 

NN without replacement 0.164 1.327 0.043 0.304 

Optimal pair matching 0.450 3.006 0.106 0.391 

Optimal full matching 0.151 1.479 0.047 0.304 

Coarsened exact matching 0.026 1.099 0.016 0.064 

Subclassification 0.240 2.404 0.071 0.304 

 

C
E

U
eT

D
C

ol
le

ct
io

n



135 

D. stVSL Results for Explicit Participants 

In the main text, all results for the stVSL experiments included only participants with implicit 

knowledge. Here, I give a short overview of the results for the explicit group of participants, 

discussing them descriptively in relation to the results of the implicit group of participants. 

Experiment 5a. The participants with explicit knowledge show better overall perfor-

mance and do not show superiority in learning diagonal pairs. (N explicit: 15; Proportion of 

explicit participants: 17.05%) 

Experiment 5b. The participants with explicit knowledge show better overall perfor-

mance and do not show superiority in learning diagonal pairs. (N explicit: 15; Proportion of 

explicit participants: 16.67%) 

Experiment 5c. The participants with explicit knowledge show better overall perfor-

mance and do not show superiority in learning diagonal pairs. (N explicit: 10; Proportion of 

explicit participants: 11.11%) 

Comparison of 5a, 5b, 5c: Descriptive Results: 5a is not superior to 5c for the explicit 

group, suggesting no or smaller effect of the temporal coherence. 

 

Figure D.1 Experiment 5a-c Explicit Results. This figure visualizes 2AFC test performance for 

participants with explicit knowledge in Experiments 5a-c. The y-axis represents the perfor-

mance on 2AFC trials. Error bars represent the standard error. The dotted line indicates the 

chance level. 
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Experiment 6a. Explicit participants learn the parallel but not the orthogonal pairs, as 

the implicit participants. Furthermore, they also learn the diagonal pairs. It seems like the over-

all bias observed in participants with implicit knowledge is not present, and we see that partic-

ipants know specifically for the parallel pairs they learned which orientation they had. (N ex-

plicit: 18; Proportion of explicit participants: 14.06%) 

 

 

Figure D.2 Experiment 6a Explicit Results. The y-axis represents the explicit participants' mean 

performance on 2AFC trials. Error bars represent the standard error. The dotted line indicates 

the chance level of 50% or 0%. Stars represent the significance of the difference from chance. 

* p < 0.05; ** p < 0.01; *** p < 0.005. The Standard learning trials was a standard learning 

test using one real pair from the training phase and one foil pair created by combining shapes 

of two real pairs. It measures learning of item co-occurrence. The Spatial learning trials 

showed the same real pair twice. Once in its correct orientation and once rotated by 90°. It 

measures learning of the spatial arrangement of learned pairs. The Bias trials showed the same 

foil pair twice. Once horizontally and once vertically. There is no correct response, and it 

measures bias for one of the orientations. 

 

 

Experiment 6b. Descriptive Statistics: It seems likely that participants have learned all 

three types of pairs. They clearly seem to know the orientation of the parallel pairs, potentially 

also of the orthogonal pairs, but not of the diagonal pairs. In contrast to the implicit group, there 

seems to be no overall bias. (N explicit: 7; Proportion of explicit participants: 6.54%) 
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Figure D.3 Experiment 6b Explicit Results. The y-axis represents the explicit participants' mean 

performance on 2AFC trials. Error bars represent the standard error. The dotted line indicates 

the chance level of 50% or 0%. Stars represent the significance of the difference from chance. 

* p < 0.05; ** p < 0.01; *** p < 0.005. The Standard learning trials was a standard learning 

test using one real pair from the training phase and one foil pair created by combining shapes 

of two real pairs. It measures learning of item co-occurrence. The Spatial learning trials 

showed the same real pair twice. Once in its correct orientation and once rotated by 90°. It 

measures learning of the spatial arrangement of learned pairs. The Bias trials showed the same 

foil pair twice. Once horizontally and once vertically. There is no correct response, and it 

measures bias for one of the orientations. 
 

E. stVSL Supplementary Experiment 1: More Training 

The experiments testing the role of temporal coherence in the implicit learning of spatial struc-

ture in Chapter 4 (Experiments 5a-c) used realized one arbitrary length training. To test whether 

similar results would emerge for a longer duration of training, supplemental Experiment 1 is a 

replication of Experiment 5a with twice the number of training scenes. 

 

Participants 

90 participants (38 female, mean age 28.9, SD = 8.7) were recruited via prolific.co. The total 

hourly compensation was £ 2.5. All participants had normal or corrected-to-normal vision. The 

sample size was chosen to match that of Experiment 5a. The study was approved by the 
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Hungarian United Ethical Review Committee for Research in Psychology (EPKEB), and all 

participants provided informed consent. 

 

Materials 

The materials were identical to Experiment 5a. 

 

Procedure 

The procedure was identical to Experiment 5a, except for the amount of training scenes viewed. 

They were doubled from 72 to 144 scenes, increasing the amount of steps (motion animations) 

from 216 to 432. This left the relative number of steps along each motion direction and the 

relative number of partial presentations unchanged, meaning that the conditional and transi-

tional statistics are also the same. 

 

Results 

Prior to analysis, three participants were removed for response bias, and 15 participants were 

removed for acquiring explicit knowledge of the structure of the task. 

One-sample t-tests showed that performance for all of the three pair types was signifi-

cantly different from chance: parallel (M(SE) = 55.7(2.0), t(71) = 2.8, p = 0.006, d = 0.33, BF 

= 4.8), orthogonal (M(SE) = 56.4(2.1), t(71) = 3.0, p = 0.004, d = 0.36, BF = 8.0), diagonal 

(M(SE) = 58.1 (2.3), t(71) = 3.5, p < 0.001, d = 0.42, BF = 35). 

The results for all three pair types were not significantly different from the results of 

Experiment 5a: parallel (t(139.99) = -0.45, p = 0.657, d = 0.07, BF = 0.20), orthogonal 

(t(139.17) = 0.25, p = 0.802, d = 0.04, BF = 0.19), diagonal (t(137.52) = 0.20, p = 0.845, d = 

0.03, BF = 0.18) 
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Discussion 

We can see that the participants who received twice the amount of training in Supplementary 

Experiment 1 showed very similar results to the original participants in Experiment 5a. This 

suggests that our participants in Experiment 5a were already close to a ceiling effect, and more 

training did not increase implicit learning.  
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