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Abstract

Given a normal surface singularity (X, 0), its link, M, a closed differ-
entiable three dimensional manifold, carries much analytic information.
For example, a germ of a normal space is regular if (and only if) its link is
the three sphere S® [31] (it is even sufficient to assume that 71 (M) = 1).
The geometric genus, py, is an analytic invariant of (X, 0) which, in gen-
eral, cannot be recovered from the link. However, whether p, = 0 can be
determined from the link [1]. The same holds for the statement py, = 1, as-
suming that (X, 0) is Gorenstein [22]. It is an interesting question to ask,
whether, under suitable analytic and topological conditions, the geometric
genus (or other analytic invariants) can be recovered from the link. The
Casson invariant conjecture [50] predicts that py can be identified using the
Casson invariant in the case when (X, 0) is a complete intersection and M
has trivial first homology with integral coefficients (the original statement
identifies the signature of a Milnor fiber rather then pgy, but in this case
these are equivalent data [23, 70]). The Seiberg—Witten invariant conjec-
ture predicts that the geometric genus of a Gorenstein singularity, whose
link has trivial first homology with rational coefficients, can be calculated
as a normalized Seiberg—Witten invariant of the link. The first conjecture
is still open, but counterexamples have been found for the second one.
We prove here the Seiberg—Witten invariant conjecture for hypersurface
singularities given by a function with Newton nondegenerate principal
part. We provide a theory of computation sequences and how they bound
the geometric genus. Newton nondegenerate singularities can be resolved
explicitly by Oka’s algorithm, and we exploit the combinatorial interplay
between the resolution graph and the Newton diagram to show that in
each step of the computation sequence constructed, the given bound is
sharp. Our method recovers the geometric genus of (X, 0) explicitly from
the link, assuming that (X, 0) is indeed Newton nondegenerate with a ra-
tional homology sphere link. With some additional information about the
Newton diagram, we recover part of the spectrum, as well as the Poincaré
series associated with the Newton filtration. Finally, we show that the
normalized Seiberg—Witten invariant associated with the canonical spin®
structure on the link coincides with our identification of the geometric
genus.
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1 Introduction

This text was written in 2015, in partial fulfillment of the requirements for the
degree of doctor of philosophy in mathematics at Central European University
in Budapest, under the supervision of Némethi Andrés.

1.1 Content

In section 2 we recall some results on two dimensional singularities and fix nota-
tion. These include a formula for the geometric genus in terms of the Poincaré
series and a similar formula for the normalized Seiberg-Witten invariant of the
link in terms of the zeta function, a general theory of computation sequences,
the polynomial part and periodic constant of a power series in one variable, a
short review of the spectrum of hypersurface singularities, as well as a result
of Saito on part of the spectrum. In the last subsection we give a detailed
presentation of our results.

In section 3 we recall the definition of Newton nondegeneracy for a hypersur-
face singularity, and the construction of its Newton diagram. We recall Oka’s
algorithm, which provides the graph of a resolution of the singularity from the
Newton diagram and discuss conditions of minimality and convenience. Next
we recall the Newton filtration and its associated Poincaré series. In the last
section we recall a technical classification result which is crucial to the proof in
section 7.

In all the following sections, we will assume that (X, 0) is a hypersurface sin-
gularity, given by a function with Newton nondegenerate principal part, with a
rational homology sphere link. Furthermore, GG is the resolution graph produced
by Oka’s algorithm from the Newton diagram of this function.

In section 4 we fix some notation regarding polygons in two dimensional real
affine space, and give a result on counting integral points in such polygons.

In section 5, we construct three computation sequences on G and prove a
formula which says that the intersection numbers along these sequences count
the integral points under the Newton diagram, or in the positive octant of R3.

In section 6 we apply the formula from the previous section to prove that the
computation sequences constructed calculate the geometric genus, as well as part
of the spectrum and the Poincaré series associated with the Newton filtration.
In particular, this gives a simple topological identification of the geometric genus
for two dimensional Newton nondegenerate hypersurface singularities.

In section 7, we prove that one of the computation sequences constructed
in section 5 calculates the normalized Seiberg—Witten invariant for the canon-
ical spin® structure on the link. As a corollary, we prove the Seiberg—Witten
invariant conjecture for (X, 0).

1.2 Acknowledgements

I would like to thank my adviser, Némethi Andréas, for his great support and
encouragement, and the many things he has taught me. I would also like to
thank Central European University and Alfréd Rényi Institute of Mathematics,
particularly Stipsicz Andréas, for providing me with the opportunity to stay in
Budapest to study mathematics. Finally, I would like to thank my colleagues,
friends and family, whose moral support has been indispensable to my work.
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1.3 Notation

The content of an integral vector a € Z" is the greatest common divisor of its
coordinates. A primitive vector is a vector whose content is 1. If p,q € ZV,
then we say that the segment [p, ¢| is primitive if ¢ — p is a primitive vector. If
we consider ZV as an affine space, and ¢ : ZV — Z is an affine function, then
its content is the index of its image as a coset in Z. Equivalently, the content ¢
of £ is the largest ¢ € Z for which there exists an affine function 0:7" — Z and
a constant b € Z so that £ = ¢/ +b. An affine function is primitive if its content
is 1.

2 General theory and statement of results

In this section we will recall some facts about singularities and fix some nota-
tion. We will always assume that (X,0) is a germ of a normal complex surface
singularity, embedded in some (CV,0). Furthermore, when choosing a represen-
tative X of the germ (X, 0), we assume X to be a contractible Stein space given
as the intersection of a closed analytic set and a suitably small ball around the
origin, and that X is smooth outside the origin.

2.1 The link

In this section we denote by S9=! C RY the sphere with radius r around the
origin in R%, by B¢ C R¢ the ball with radius r and by B¢ its closure. For the
definition of plumbing graphs, we refer to [48, 31, 47, 60]. Recall that each vertex
v of a plumbing graph is labelled by two integers, the selfintersection number
—b, and the genus g,. Furthermore, denoting the vertex set of the graph by V,
then there is an associated |V| x |V| intersection matriz I with I, , = —b, and
1, ., the number of edges between v and w if v # w.

2.1.1 Definition. Let (X,0) be a germ of an isolated surface singularity. Its
link is the three dimensional manifold M = X N S?V~! where we assume given
some embedding (X, 0) — (CV,0) and the radius r > 0 is sufficiently small. As a
differentiable manifold, M does not depend on the embedding (X, 0) — (CV,0),
or r (see e.g. [26]).

The topology (or embedded topology) of a singularity is completely encoded
in its link (or the embedding M < S2V=1 of the link).

2.1.2 Proposition ([30, 26]). Let (X,0) be a singularity embedded into (C,0)
for some N > 0 and let r > 0 be small enough. Then the pair (B>, X N B2N)
is homeomorphic to the cone over the pair (SN =1 M). O

2.1.3. In [31], Mumford proved that the germ of a normal two dimensional
space is smooth if and only if the link is simply connected. He also showed
that the link can always be described by a plumbing graph. These graphs were
studied by Neumann in [48] where he gave a calculus for determining whether
two graphs yield the same manifold. Furthermore, every graph is equivalent to
a unique minimal graph which is easily determined from the original graph. A
plumbing graph for the link may be obtained from a resolution as described in
subsection 2.2.
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2.1.4 Proposition (Grauert [11]). Let M be the three dimensional manifold
obtained from the plumbing graph G. Then M is the link of some singularity
if and only if G is connected and the associated intersection matriz is negative

definite. O

2.1.5 Proposition (Mumford [31]). Let M be the three dimensional manifold
obtained from the plumbing graph G and assume that the associated intersection
matriz is negative definite. Let g = _\, g, be the sum of genera of the vertices
of G and define c as the first Betti number of the topological realisation of the
graph G, that is, number of independent loops. Then Hy(M,Z) has rank c + 2g
and torsion the cokernel of the linear map given by the intersection matriz. In
particular, we have Hi(M,Q) = 0 if and only if G is a tree and g, = 0 for all
vertices v. O

2.1.6 Definition. A closed three dimensional manifold M is called a rational
homology sphere (integral homology sphere) if H;(M,Q) = H;(S3, Q) (H;(M,Z) =
H;(S3,7)). By Poincaré duality, this is equivalent to Hy (M, Q) = 0 (H{(M,Z) =
0).

2.2 Resolutions of surface singularities

2.2.1 Definition. Let (X, 0) be a normal isolated singularity. A resolution of X
is a holomorphic manifold X, together with a proper surjective map  : XX
so that E = 7~1(0) is a divisor in X and the induced map X \ E — X \ {0} is
biholomorphic. We refer to E as the exceptional divisor of the resolution 7. We
say that 7 is a good resolution if E C X is a normal crossing divisor, that is, a
union of smooth submanifolds intersecting transversally, with no triple intersec-
tions. We will always assume this condition. Write £ = U,y E,,, where E,, are
the irreducible components of E. Denote by g, the genus of (the normalisation
of) the curve E, and by —b, the Euler number of the normal bundle of E, as
a submanifold of X.

2.2.2 Definition. Let 7 : (X, F) — (X,0) be a (good) resolution as above.
The resolution graph G associated with 7 is the graph with vertex set VV and
|E, N E,| edges between v and w if v # w and no loops. It is decorated with
the selfintersection numbers —b, and genera g, for v € V. We denote by ¢, the
degree of a vertex G, that is, 6, = >_, ., [Ey N Ey.

2.2.3 Proposition (Mumford [31]). Let M be the link of a singularity admitting
a resolution with resolution graph G. Then M is the plumbed manifold obtained
from the plumbing graph G. O

2.2.4 Proposition (Zariski’s main theorem). If G is the graph of a resolution
of a normal singularity, then G is connected.

Proof. This follows from the fact that E is a connected variety, see e.g. [15],
Corollary 11.4. O

2.2.5. Given an embedding of (X,0) into some smooth space (CV,0), we may
take as a representative for the germ an intersection with a closed ball of suf-

ficiently small radius. Then, the resolution X is given as a manifold with
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boundary and X = M. In particular, one can consider the perfect pair-
ing Ho(X,Z) ® Hy(X,M,Z) — 7 which induces a symmetric form (-,-) :
Hy(X,7)%% = 7.

The exceptional divisor E is a strong homotopy retract of X. In particular,
Hy(X,7) = 7(E,Jv € V) and Ho(X,M,Z) = Hom(Hs(X,Z),Z) is free. If
v # w, then (E,, E,) = |E, N E,|. Further, E? = (E,, E,) is the Euler
number of the normal bundle of the submanifold E, C X. The intersection
form is negative definite, in particular, nondegenerate [31]. This means that the
natural map Hy(X,Z) — Hy(X, M, Z) may be viewed as an inclusion with finite
cokernel. In particular, we may view Ho(X, M, Z) as a lattice in Hy(X,Z) ® Q,
containing Ho(X,Z) with finite index.

2.2.6 Definition. Let L = Hy(X,Z) = Z (E,|jv € V) and L' = Ho(X, M,Z) =
Hom(L,Z). The form (-,-) : L ® L — Z defined above is the intersection form.
We extend the intersection form to Lo = L ® Q and Lg = L ® R by linearity.
Elements of L (or Lg, Lg) will be referred to as cycles with integral (rational,
real) coefficients. We set H = L’/L. The intersection form is encoded in the
intersection matriz I = ((Ey, Ey))y wey. This matrix is invertible over Q, and
we write I~ = (I;1).

v,w

2.2.7 Remark. By the above discussion, it is clear that we have an identifica-
tion L' ={l € Lo |VI' e L: (I,I') € Z}.

2.2.8 Definition. The canonical cycle K € L’ is the unique cycle satisfying
the adjunction equalities (K, E,) = —E? 4 2g, — 2. We define the anticanonical
cycle as Zx = —K. We say that G is numerically Gorenstein if K € L.

2.2.9 Remark. (i) The nondegeneracy of the intersection form guarantees the
existence of Zx as a cycle with rational coeflicients. By remark 2.2.7 we have
Zyk € L'. For hypersurface singularities (more generally, for Gorenstein sin-
gularities) we have, in fact, Zx € L. Indeed, K is numerically equivalent to
the divisor defined by any meromorphic differential form on X. In the case of
a hypersurface singularity (or, more generally, a Gorenstein singularity), there
exists a meromorphic 2-form on X whose divisor is exactly K. For details, see
e.g. [7, 33].

(if) This definition of the canonical cycle assumes that all components F, are
smooth. If this is not the case, the correct formula also contains a term counting
the “number of nodes and cusps” on E,, see e.g. [33].

(iii) An isolated singularity (X, 0) is said to be Gorenstein if the canonical line
bundle Qg(\ {0} in a punctured neighbourhood around 0 is trivial. Gorenstein
singularities are numerically Gorenstein [7, 33] and hypersurfaces (more gener-
ally, complete intersections) are Gorenstein [33]. Similarly, (X,0) is said to be
Q-Gorenstein if some tensor power of Q%{\{o} is trivial.

2.2.10 Definition. The dual cycles E} € L', v € V, are defined by the linear
equations (E, Ey) = —0yw, where d, 4, is the Kronecker delta. These exist
and are well defined since the intersection matrix [ is invertible over Q. In fact,
we have E} =Y o\, —I, .\, E,. Tt follows that the family (E}).cy is a basis of
L’. In particular, we have EX € L for all v € V if and only if M is an integral
homology sphere.
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2.2.11 Definition. For a cycle Z =" _,, m,E, € L, write m,(Z) = m,.

2.2.12 Lemma. The entries m,,(E}) = —1I, ., are positive.

Proof. Write E} = Z1 — Z, where m,(Z;) > 0 for all v and i = 1,2, and Z7, Z5
have disjoint supports (the support of a cycleis supp(Z) = {v € V|m,(Z) # 0}).
Since (—Zs, By,) < (Z,E,) <0 for all v € supp(Z»), we find Z2 > 0, hence Z5 =
0 by negative definiteness and so Z = Z;. We must show supp(Z;) = V. Since
Z # 0, if there is a v € V\supp(Z), we may assume that there is such a v having
a neighbour in supp(Z). This would give (Z,E,) = Y ymu(Z) >0
contradicting our assumptions. O

u€eV, Nsupp(Z

2.3 The topological semigroup

Throughout this subsection we assume given a good resolution 7 : X — X
as described in the previous subsection. We also assume that the link M is a
rational homology sphere.

2.3.1 Definition. The Lipman cone is the set Syop = {Z € L|Yv €V : (Z,E,) < 0}.
Define also S{,, ={Z e L' |Yv eV : (Z,E,) <0}.

top

2.3.2 Remark. We have S§{,, = N(E;[v € V) and Siop = S, N L.

op

2.3.3 Proposition. Let g € Ox and define Z € L by setting m,(Z) equal to
the divisorial valuation of n*g along E, C X. Then Z € Siop-

Proof. We have (g9) = >, <y, mo(Z2)E, + S where S is a divisor, none of whose
components are supported on E. In particular, we have (F,,S) > 0 for all

v € V. Furthermore, (g) is linearly equivalent to 0 in the divisor group, which
gives (E,, (¢)) = 0 for all v. Thus, (E,,Z) = —(E,,S) <0. O

2.3.4 Proposition (Artin [1]). The Lipman cone is closed under addition,
and therefore makes up a semigroup. Further, for Z; = % m,;E,, i = 1,2,
define their meet as Zy A\ Zo = Y, min{my 1, my2}Ey. If Z1,Z5 € Siop, then
Z1N\Zsy € St0p~

Proof. The first statement is clear, since Siop C L is given by inequalities,
and is therefore given as the integral points in a real convex cone. For the
second statement, set m, = min{m, 1,M,2}. Assuming Z;,Zs € Siop, and,
say, My = My 1, We get

(Zl A Z27 Ev) = mv,lEg + Z mw(Evv Ew) S mv,lE?; + Z mw,l(Eva Eu}) S 0
w#v w#v

O

2.3.5 Definition. By lemma 2.2.12, the elements in S, have positive entries.
Therefore, the partially ordered set Siop\{0} has minimal elements. Furthermor,
by lemma 2.2.12, the meet Z; A Z5 of two elements Z;, Zy € Siop \ {0} is again
nonzero. Thus, the set Siop \ {0} contains a unique minimal element. We denote
this element by Z,;, and call it Artin’s minimal cycle, or, the minimal cycle.
This element is often referred to as the fundamental cycle.

10
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2.4 Topological zeta and counting functions

2.4.1. We will make use of the set Z[[t"]] = {>,c; ait' |a; € Z}. Tt is a group
under addition, and has a partially defined multiplication. More precisely, if
At) = Y ait! and B(t) = Y. bit! are elements of Z[[t*]], then A(t) - B(t) is
defined if the sum ¢; = >, ., _ a;, by, is finite for all [ € L, in which case we
define A(t) - B(t) = 3 ,c; at'. In particular, Z[[t"]] is a module over the ring
of Laurent polynomials Z[t{',...,t¥!] where s = [V|. A simple exercise also
shows that if A(t) = a;t! is supported in the Lipman cone (that is, a; = 0 for
I & Stop) then A(t) - 37,44 t! is well defined.

In precisely the same way, one obtains the set Z[[t"']] = {3, ait! | a € Z}
which naturally contains Z[[tL]], and is contained in Z[[tlﬂ/d7 cee Sil/d]]
d=|H]|.

One may modify this definition by introducing coefficients from any ring R,
thus obtaining R[[tY]].

For a discussion of these sets and some rings contained in them, see e.g. [37].

, where

2.4.2 Remark. If C' C Lg is a strictly convex cone (i.e. contains no nontrival
linear space) and A(t), B(t) € Z[[t~']] as above, with ay = by = 0if ! ¢ C,
then A(t) - B(t) is well defined. As is easily seen, the set of such series thus
form a local ring, with maximal ideal the set of series A(t) with ag = 0. In
particular, if I’ € C, and I’ # 0 then the element 1 — " is invertible, in fact we
have (1 — )1 = >oico t*’. Since this is independent of the cone C, we will
assume this formula without referring to C.

2.4.3 Definition. For [ € L', denote by [I] € H = L'/L the associated residue
class. Denote by H = Hom(H,C) the Pontrjagin dual of the group H. The
intersection product induces an isomorphism 6 : H — FI, (] — e2mi(l) - The
equivariant zeta function associated with the resolution graph G is

2(t) = [J (- [B]¢%)° 2 € ZH][[tV]). (2.1)
veV

The natural bijection Z[H][[t] « Z[[t*']][H] induces well defined series
Zn(t) € Z[[t"]] for each h € H so that Z(t) = Y oher Zn(t)h. It is clear
that the series Z,(t) is supported on the coset of L in L’ corresponding to h,
that is, the coefficient of I’ € L’ in Z,(t) vanishes if [I'] # h. In particular, we
have Zy(t) € Z[[tL]], where 0 denotes the trivial element of H. We call Z(t)
the zeta function associated with the graph G. Denote by z; the coefficients of
Z(t),ie. Z(t) =3 pcp zpt!. Thus, we have Zy(t) = e ath.

The equivariant counting function associated with G is the series Q(t) =
dovern [t e Z[H][[t"], where ¢ = S {zp4i |l € L, 1 # 0}. This yields a
decomposition Q(t) = 3,y Qn(t)h where Qp, € Z|[[t"']] as above. In particu-
lar, Qo(t) € Z[[t]]. The series Qq(t) is called the counting function associated
with G.

2.4.4 Remark. The zeta function is supported on the Lipman cone, that is,
writing Zo(t) = >, zit! we have z; = 0 if | & Siop.

11
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2.5 The geometric genus

2.5.1 Definition. Let (X,0) be a normal surface singularity. The geometric
genus of (X,0) is defined as p; = h'(X,O%), where X — X is a resolution.

The geometric genus of (X, 0) is defined in terms of a resolution. Using the
fact that any resolution is obtained by blowing up the minimal resolution, as
well as Lemma 3.3 from [21], one finds that p, is independent of the resolution.
This fact also follows from the following formula of Laufer:

2.5.2 Proposition (Laufer [21], Theorem 3.4). We have

HO(X\0,0%,,)

HY(X\0,0%,)

pg = dimg (2.2)

where HO(X \ 0793(\0) is the set of germs of holomorphic two forms defined

around the origin, and HY, (X \0, Q%{\o) is the subset of square integrable forms.
O

2.5.3. Assume that we have a resolution 7 : X — X as in 2.2 and take w €
HO(X \ O,Qg(\o). By Laufer [21], w is square integrable if and only if 7*(w)

extends to a holomorphic form on X.

2.5.4 Definition. Assume given a resolution 7 : X — X, with notation as in
2.2. The divisorial filtration is a multiindex filtration of Ox ¢ by ideals, given
by

Fly={f € Oxp|div(f) >1}, lelL.
For | € L we set h; = dim¢ Ox ,o/F (1) and define the Hilbert series as H(t) =
Sep ut' € Z[[tY]]. The Poincaré series is defined as P(t) = >, mt' =
—H(®) [Toen(1 = t571).

2.5.5 Proposition (Némethi [37]). The Poincaré series is supported on the
Lipman cone, that is, if | ¢ Sop then p; = 0. O

2.5.6. The Poincaré series is obtained by a simple formula from the Hilbert
series. There are, however, nonzero elements in Z[[t*]] whose product with
1 —t,! is defined and equals zero. This means that, in principle, one can not
use this formula to determine H from P. The following proposition guarantees
that one may nonetheless determine H from P. The two series therefore provide
equivalent data.

2.5.7 Proposition (Némethi [37]). Let H and P be as in definition 2.5.4.
Then, for any l € L, we have

hy = Zp%

l'eL
121

Equivalently, we have H(t) = (leo tl> - P(t). O

12
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2.5.8 Proposition (Némethi [37, 39]). Assume the notation in 2.2 and 2.3 and
let H and P be as in 2.5.4. Then, ifl € L and (I, E,) < (Zk, E,) for allv eV,

then z L)
m=py+ 2D

O

2.5.9. Combining proposition 2.5.7 and proposition 2.5.8, one finds that the
geometric genus can be calculated once the Poincaré series is known. In partic-
ular, if one finds a formula for the Poincaré series given in terms of the link M,
one automatically obtains a topological identification of p,. Although this is
indeed impossible in general, there are certain cases where the Poincaré series,
or just py, can be described by topological invariants. As an example, we have
the following result:

2.5.10 Proposition (Némethi [39, 37]). Let (X,0) be a splice quitient singu-
larity [51]. Then the P(t) = Zy(t) € Z[[t"]]. In particular, this holds if (X,0)
is rational, minimally elliptic or weighted homogeneous.

2.6 The Seiberg—Witten invariants
0

We will now discuss the Seiberg—Witten invariants swi,(0) € Q associated
with any three dimensional manifold M with a spin® structure o. The defini-
tion of these numbers is quite involved and we will only touch the surface of
the theory here. For details, see [25] and references therein. There are, how-
ever, various identifications of the Seiberg-Witten invariants. In [28], Meng
and Taubes proved that in the case Hi(M,Q) # 0, the Seiberg-Witten invari-
ants are equivalent to Milnor torsion. Nicolaescu then proved [55] that in the
case of a rational homology sphere, the Seiberg—Witten invariants are given by
the Casson—Walker invariant and Reidemeister—Turaev torsion . In this case,
sw9,(c) is also given as the normalized Euler characteristic of either Ozsvéth
and Szabo’s Heegaard—Floer homology [62], or Némethi’s lattice homology as-
sociated with o, see subsection 2.9.
As in 2.2, we use the notation H = Hy (M, Z).

2.6.1. We start with a short review ofi spin® structures. For more details, see
e.g. [54, 40]. For each n > 0 we have the group Spin®(n), along with a U(1)
bundle Spin®(n) — SO(n). This is (for n > 0) the U(1) bundle corresponding
to the nontrivial element in H?(SO(n),Z) = Z/27Z. Let X be a CW complex,
and let £ — X be a real vector bundle of rank n obtained via a map p :
X — BSO(n). A spin® structure on E is a lifting X — BSpin®(n) of p. Since
ker(Spin®(n) — SO(n)) = U(1), the difference of two spin® structures is a U(1)
bundle, which is zero if and only the two structures coincide. The set Spin®(E)
of spin® structures on E is therefore a torsor over H?(X,Z) = [X,BU(1)], unless
it is empty. A spin® structure on a manifold M is by definition a spin® structure
on its tangent bundle, their set is denoted by Spin®(M). Denote the action by
H?(X,Z) x Spin®(E) 5 (h,0) + ho € Spin®(E).

The map U(n) — SO(2n) factors through Spin®(2n). A complex structure on
a vector bundle of even rank therefore induces a spin® structure. In particular,
if E has a complex structure, then Spin®(FE) # (0.

13
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Now, assume that M is the boundary of a complex surface X. We want
to construct the canonical spin® structure ocan, € Spin(M) on M. Note first
that since X is a complex manifold, its tangent bundle has a complex structure
which induces Gean € Spinc(f( ). Now, the tangent bundle of X splits on M as
TX\M =R & TM, where we denote simply by R the trivial line bundle. Here,
the first summand is generated by an outwards pointing vector field. This yields
a lift M — BSO(3) of the structure map defining TX |5, and this map defines
the tangent bundle of M. We therefore have lifts of M — BSO(4) to BSO(3)
as well as BSpin®(4). Since Spin®(3) = Spin®(4) xgo(4) SO(3), this defines a
lift M — BSpin®(3) of the structure map of the tangent space TM. This is
the canonical spin® structure oy, on M. By the above statements, we get a
bijection H = H%(M,Z) <> Spin®(M) given by h < h0cap.

2.6.2. Let M be a compact three dimensional differentiable manifold and choose
a spin® structure o on M. We will assume throughout that the first Betti number
of M is zero, that is, H; (M, Q) = 0. Choose a Riemannian metric g and a closed
two form 1 on M. Assuming that g and n are chosen sufficiently generic, one
obtains a space of monopoles, whose signed count we denote by sw (o, g,n).
Unnormalized Seiberg—Witten invariant This number depends on the choice of
g and 7. The Kreck—Stolz invariant KSys (o, g,n) € Q is another number defined
by this data. The normalized Seiberg—Witten invariants sw9, (o) are defined as
follows:

2.6.3 Proposition (Lim [25]). The number sw$,(c) = swa (o, g,m)+KSrm (0, 9,m)
is independent of the choice of g and 7). O

2.6.4 Remark. Lim also obtained results in the case when the first Betti num-
ber is greater or equal to 1. We will not discuss these results here, since our
results concern rational homology spheres only.

2.6.5. Let M be a rational homology sphere with a spin® structure o. Denote by
A(M) the Casson—Walker—Lescop invariant of M, normalized as in [24]. Denote
by
Tito = Y Taro(h)h € Q[H]
heH
the Reidemeister—Turaev torsion defined in [68, 69]. The normalized (or mod-
ified) Reidemeister—Turaev torsion is defined as

The =Y (TM,U<h> - ﬁg@‘f)) h e Q).

heH
These invariants are discussed in [40].

2.6.6 Remark. The Casson, Casson—Walker and Casson—Walker—Lescop in-
variants are successive generalizations. Casson introduced an integral invariant
Ac(M) for M an integral homology sphere. For M a rational homology sphere,
Walker defined Acw (M) satisfying Acw (M) = 2Ac(M) if M is an integral ho-
mology sphere. In [24], Lescop defined an invariant Agw (M) for any closed
oriented three dimensional manifold, satisfying Aow (M) = w)\cw (M)
whenever M is a rational homology sphere. We will follow the notation of
Lescop, that is, A = Aewr.-

14
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2.6.7 Proposition (Nicolaescu [55]). Let M be a rational homology sphere
with a spin® structure o and set SW?W’U =Y hen SWY(M, ho)h € Q[H]. Then

SWi, =T

70-'

2.6.8 Remark. Since we will only deal with rational homology spheres, we do
not state the corresponding statements in [55] about three dimensional manifolds
with nontrivial rational first homology.

We will now describe the identification of the normalized Seiberg—Witten
invariants which we will use to prove the main theorem in section 7.

2.6.9 Proposition (Némethi [38, 32]). Assume the notation in subsection 2.2
and subsection 2.3 and that M is a rational homology sphere. Take anyl' € L'
satisfying (I', E,) < (Zk, E,) for allv e V. Then

—Zx +20)2+ 1|V
Z 2y = SW?W([I/] Ucan) — ( K 3 ) | | (23)

L3lZ0

2.6.10 Remark. In [19], Laszl6 develops a general theory of multivariable
power series and defines a periodic constant. In his language, eq. 2.3 means
that for h € H, the periodic constant of Zy(¢) is the number

(—ZK + 27“h)2 + |V‘
8 b)

sw?w (hocan) —

where 7, is the unique element in L’ with [ry] = h and 0 < m,(r;) < 1 for all
v E V.

2.7 The Seiberg—Witten invariant conjecture

In this subsection we give a very brief account of the Seiberg—Witten invariant
conjecture of Némethi and Nicolaescu.

2.7.1. In [40], Némethi and Nicolaescu conjectured a topological upper bound
on the geometric genus of a normal surface singularity, whose link is a rational
homology sphere in terms of the normalized Seiberg—Witten invariant of the
link, and the resolution graph. More precisely, the Seiberg—Witten invariant
conjecture (SWIC) says that

Zi+ V] o

3 > pg, (2.4)

sw; (0can) —
with equality if the singularity is Q-Gorenstein (in particular, Gorenstein). If
the singularity is a complete intersection and the link is an integral homology
sphere, then the conjecture is equivalent with the Casson invariant conjecture
(CIC) of Neumann and Wahl [50]. Although counterexamples have been found
to the SWIC (see below), it is still an interesting question to ask, under which
conditions does the SWIC hold? Furthermore, although no counterexamples
have been found to the CIC, it is a difficult and interesting problem to construct
an isolated complete intersection singularity, whose link is an integral homology
sphere, and for which the CIC has not already been determined.
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2.7.2 Example. (i) Neumann and Wahl proved the CIC for weighted homo-
geneous singularities, suspensions of plane curves and certain complete intersec-
tions in C* [50]. They also note that in the case of Brieskorn singularities, that
is, hypersurface singularities given by an equation the form zP + y9 + 2" = 0,
the conjecture follows from work of Fintushel and Stern [10].

(ii) Némethi and Nicolaescu proved the SWIC for certain rational and minimally
elliptic singularities [40], for singularities with a good C* action [41] and for
suspensions of irreducible plane curve singularities [42].

(iii) Némethi and Okuma proved the CIC for singularities of splice type [44], as
well as the SWIC for splice quotients [43] (see [52, 51] for definitions).

(iv) Using superisolated singularities, Luengo-Velasco, Melle-Herndndez and
Némethi constructed counterexamples to the SWIC [27]. More precisely, they
constructed hypersurface singularities (in particular, Gorenstein) for which eq. 2.4
does not hold.

(v) We prove the SWIC in the case of a hypersurface singularity with Newton
nondegenerate principal part, see corollary 7.0.3.

2.8 Computation sequences

In this section we will discuss computation sequences and an upper bound on
the geometric genus obtained by such sequences.

In [21], Laufer gave an algorithm to determine the minimal cycle and gave
a criterion for rationality, i.e. p, = 0. In [22] he used the same algorithm to
find a topological characterisation of minimally elliptic singularities. This idea
was generalized by Yau in [71] and by Némethi in [34] for more general elliptic
singularities.

One of the main results in [46] is the existence of a computation sequence
to the anticanonical cycle obtained directly from the resolution graph yielding
equality in eq. 2.5 in the case of Newton nondegenerate singularities, thus giving
a topological identification of the geometric genus. This result, as well as some
improvements, is described in section 5.

2.8.1 Definition. Assume given a resolution graph G for a singularity (X, 0).
Let Z € L be an effective cycle. A computation sequence for Z is a sequence
Zo, ..., 2k so that Zg = 0, Z, = Z and for each i we have a v(i) € V so that
Ziy1 = Z; + Ey4). Given such a computation sequence, its continuation to
infinity is the sequence (Z;){<, recursively defined by Z;11 = Z; + E,(;) where
we extend v to N by v(¢) = v(i) if ¢/ =i (mod k).

2.8.2 Theorem. Let Z € L be an effective divisor and (Z;)%_, a computation
sequence for Z. Then

k—1
hz <Y max{0, (= Z, Ey) + 1} (2.5)
=0

and we have an equality if and only if the natural maps HO(X,OX(—Zi)) —
H°(Eys), Og, ., (—Z:i)) are surjective for all i.

2.8.3 Remark. If G is numerically Gorenstein, then we have hyz, = p, by
proposition 2.5.8. Therefore, eq. 2.5 gives a topological bound on the geometric
genus in this case.
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Proof of theorem 2.8.2. For any i, we have a short exact sequence
00— 03(~Ziy1) —= 05(=2Z;)) —= Og,,,(=Zi) —=0
which yields the long exact sequence

0—> H(X,04(~Zi1)) —= H(X, 05 (~2;)) —= H(X,Op,, (- Zz))j

[—>H1(X0 (=Zir1) —= HY(X,05(~2;)) — H'(X, 0p,, (- Zi)) — 0.

Denote by ; the connection homomorphism of this sequence. We get

e HO(X,0%)
2 = (%04 2)
:’Hdi HO(X, 0% (~Z:)
i=0 HO(X Ox ( H—l))
k—1

dime H(X, O, , (—Z;)) — 1k ;.

S
Il
=]

The statement now follows, since, on one hand, £, ;) = CP' and the first Chern
class of O, (=Zi) is (=Zi, Ey()), and on the other, the surjectivity condition
is equivalent to rk 8; = 0. O

2.8.4 Remark. Assume that for some i we have (Z;, E,(;)) > 0. Then the group
H°(Ey4), Og,,(—Z;)) vanishes and the surjectivity condition in theorem 2.8.2
holds automatically. Furthermore, the i*" summand in eq. 2.5 vanishes. Assume
given a subsequence iy, ...,is of 0,...,k —1so that if 0 <i <k —1 and i # i,
for all r, then (Z;, E,(;)) > 0. Then theorem 2.8.2 can be phrased entirely in
terms of this subsequence, that is, the sum on the right hand side of eq. 2.5 can
be taken over the subsequence (i,.) only, and the surjectivity condition is only
needed for the i, terms.

2.9 Lattice cohomology and path lattice cohomology

In [36], Némethi introduced lattice cohomology as well as the related path lattice
cohomology. In this subsection we will review how this theory relates with
our results and the tools introduced so far. In general, lattice cohomology is
associated with any spin® structure on the link. For simplicity, we will assume
that G is the resolution graph of a numerically Gorenstein singularity (X, 0), and
we will only consider invariants associated with the canonical spin® structure

Ucan .

2.9.1. Let L = Z (E,|v € V) be the lattice associated with a resolution graph
G as in subsection 2.2. We give Lg = L ® R the structure of a CW complex
by taking as cells the cubes [J; ;1 = {l + ZUE] toE, Wu el:0<t, < 1}, where
l € Land I C V. Let Q be the set of these cubes. Forl € L weset x(I) = (—1,1—
Zr)/2. Note that if [ is an effective cycle, then x () is the Euler characteristic of
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the structure sheaf of the scheme defined by the ideal sheaf O ¢ (—1). The weight
function w is defined on Q by setting w (0 ;) = max {x(I +>_,c; Bv) | I' C I}.
This way, the set S, = U{00; ; |w(0; 1) < n} is a subcomplex of Lg. Note that,
by negative definiteness, x is bounded from below on L and the subcomplexes
S,, are finite.

2.9.2 Definition. Let A C Ly be a subcomplex. The ¢*" lattice cohomology of
the pair (A4, w) is defined as
HY(A,w) = @ HY(ANS,, Z),
neZ

for ¢ > 0 We also set H*(A, w) = &¢>oHY(A, w). For any ¢ and n, the inclusion
ANS, C AN S,41 induces a map on cohomology which we denote by U. This
gives H*(A, w) the structure of a Z[U] module. Similarly, we get reduced lattice
cohomology H ,(A,w) by replacing cohomology H* by reduced cohomology
H*.

For [y < Iy define the rectangle R(l1,1l3) = U {DZ,I | h<I<I+) B < ZQ}.

2.9.3 Proposition (Némethi [36]). The inclusion R(0,Zx) NS, C S, is a
homotopy equivalence for all n. Furthermore, the complex S, is contractible if
n > 0.

2.9.4 Corollary. The group H ,(Lr,w) is finitely generated.

2.9.5 Definition. Set m = min x and assume that H*(A, w) has finite rank.
The normalized Euler characteristic of lattice cohomology is defined as

eu(H"(A,w)) = —m + Y (~1)7rkHZ
q=0

eu(H(A,w)) = —m + rkH® ,

2.9.6 Proposition (Némethi [38]). We have

. ZF + |V
eu(H* (Lg, w)) = swi;(0can) — KTH

O

2.9.7 Proposition (Némethi [36]). Let (Z;)%_, be a computation sequence for
Zx € L and let v be the subcomplex of Ly consisting of the cubes Uz, ¢ for

0<i<kand DZnEvm for0<i<k—1. Then

k-1
eu(H* (y,w) = Z:maX{O7 (=Zi, Eyy) + 1}
i=0

Combining this result with theorem 2.8.2 and remark 2.8.3 we have the
following

2.9.8 Corollary. We have p, < min, eu(H*(y,w), where v runs through com-
plexes associated to any computation sequence to Zx as in the proposition
above. O
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2.10 On power series in one variable

In this subsection we recall some facts about power series in one variable and
define the polynomial part of the power series expansion of a rational function.
Here, as well as in the sequel, we will identify a rational function with its Taylor
expansion at the origin. In particular, we will identify the localization C[t]
with a subring of the ring of power series C[[t]]. Furthermore, we will gener-
alize these definitions to rational Puiseux series and prove a formula for these
invariants for special series constructed from simplicial cones.

Némethi and Okuma introduced the periodic constant of a rational func-
tion [44, 57]. Braun and Némethi introduced the polynomial part of a rational
function [4]. See also [19] for a discussion and generalization of these invariants.

Recall that a quasipolynomial is a function Z — C of the form ¢ — ZLO ci(t)t,
where ¢; : Z — C are periodic functions.

2.10.1 Proposition. Let P € C[t]) be a rational function, regular at the
origin, and consider its expansion at the origin P(t) = >~ a;t" with a; € C.
Then there exists a quasipolynomial function i — al so that for i large enough

we have a; = aj. O

2.10.2 Definition. Let P, a; and a; be as in the proposition above. The
negative part of P is P"°8(t) = > o2 alt'. The polynomial part of P is PP°!(t) =
P(t) — P"8(t). The periodic constant of P(t) is the number pc P(t) = PP°!(1).

2.10.3 Lemma. The polynomial part is additive. More precisely, if P,Q €
C[t](t)} then (P + Q)pol — PPOI + onl'

Proof. 1t is clear from definition that (P + Q)" = P"*¢ + Q"*¢. The lemma
follows.

O

2.10.4 Remark. (i) We may write P(t) = p(t)/q(t) with p(t),q(t) € C[t]
and ged(p(t),q(t)) = 1. Using the Euclidean algorithm, we can write p(t) =
h(t)q(t)+r(t) with h(t),r(t) € C[t] and degr(t) < degg(t) and furthermore, this
presentation is unique. It is a simple exercise to show that P™8(t) = r(t)/q(t)
and PP (t) = h(t). In fact, P(t) = P"°8(t) + PP°!(t) is the unique presentation
of P(t) as a sum of a polynomial and a fraction of negative degree.

(ii) One finds easily that C[t];) = C[t]&N where N = {p € C[t](;) | lim¢,c p(t) = 0},
and that the polynomial and negative parts are the projections to these sum-
mands. The additivity property lemma 2.10.3 follows immediately from this
observation.

2.10.5. Denote by C[[t!/*°]] = Upez.,C[[t'/"]] the ring of Puiseuz series. Thus,
for any Puiseux series P(t), there is an N > 0 so that P'(t) = P(t"V) € C[[t]].
We will say that P(t) is rational if P’(t) is rational for such a choice of N. The
statements and definition above apply to this situation without much alteration.
In particular, if P(t) € C[[t'/*]] is rational, and N is as above, then we set
Prol(t) = PPOl(t1/N) and P e8(t) = P™°8(t1/N). Since P'P°!(t) is a polynomial,
we find that PP°!(¢) is a finite expression, that is, PP°!(t) is a Puiseuz polynomial,
PPOL(t) € C[tY/>°] = Upez.,CltH/ ™).

Similarly as above, we have the field of Laurent—Puiseuz series C((t'/>°)) =
Unez.,C((t'/™)) and ring of Laurent-Puiseuz polynomials C[t+1/®] = U, cz_, C[t+1/"].
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2.10.6 Lemma. Let py,...,pr € Z™ be linearly independent vectors, k > 1,
and ¢ : Z" — Q a linear function taking positive values on p1,...,pr. Let

C = Rxo(p1,--.,pk) and, similarly, C° = Rso(p1,...,px) and define P(t) =

> pecrzn t‘r) ¢ C[[tY/]]. Then, P(t) is rational and PP°(t) = 0. Further-
more, if ((p;) =1 foralli =1,..., k, then (1—t)P(t))>*' = (=1)* ' 3 _grzm t1—4p)
where S = {p € C°NZ3|l(p) < 1}.

Proof. The first statement depends only on C, so by replacing the vectors p;
by suitable multiples, we may assume that ¢(p;) = r for all ¢ for some r €
Q. Define the half open parallelpiped T' = Zle[o, 1[p; € R™. We obtain a
Puiseux polynomial Q = Y ;s t“® of degree < kr (that is, any monomial
with nonzero coefficient has exponent < kr). Furthermore, we see that P(t) =
Q(t)(1—t")*. This shows that P(t) € C[t];) and P"*&(¢) = P(t), hence the first
statement.
For the second statement, we start by proving that

( t )p"l_ 0 if0<r<k-—1, 26)
(1—t)k-1 (DR R k-1 <7 < k. '

The case 0 < r < k—1is clear, since in that case, the numerator on the left has
a smaller degree than the denominator. For the second case, we use induction
on k. If k = 1, then ¢"/(1 — t)*=! = ¢", so the statement is clear. Assuming
k> 1, we find

()™ - () = () -t

using the additivity of the polynomial part and the induction hypothesis. The
result now follows, since

te(p)

(1-0P0)= 3 G

peETNZ"

where T is as before, because the set S is in bijection with {p € T'|¢ > k — 1}
viap— Y .p; —p, and we have £(p) —k+1=1—4(3,p; —p). O

2.10.7 Example. (i) Let A = ®52,A; be the coordinate ring of an affine va-
riety X C CV with a good C* action as in [59] (with the origin a fixed point)
and P(t) = Y o, dimc A;t" the associated Poincaré series. In [59], Pinkham
shows that P(t) can be described in therms of the link at the origin and that
pg = pcP(1).

(ii) Let G be a negative definite graph as in subsection 2.2 and assume that
G satisfies the semigroup condition and the congruence condition described in
[51] (or, equivalently, the end curve condition, see [53, 58]). Neumann and
Wabhl [51] constructed a singularity (more precisely, a set of singularities forming
an equisingular deformation) whose topological type is given by G. Such a
singularity is called a splice quotient singularity. If v € V and G; are the
components of the complement of v in G, then these subgraphs satisfy the same
conditions. Okuma showed [57] that the geometric genus of a splice quotient
singularity is the sum of the geometric genera of splice quotient singularities with
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graphs G; plus an error term, which is the periodic constant associated with a
series in one variable obtained from G and v. More precisely, this series has two
descriptions. On one hand it is the Poincaré series associated with the graded
ring associated with the divisorial filtration on the local ring of the singularity
given by the divisor E,. On the other hand, it is the function Z{(t,), obtained
from the topological zeta function Zy(t) (see subsection 2.3) by the restriction
ty = 1 for w # v.

(iii) In [4], Braun and Némethi obtain a surgery formula for the normalized
Seiberg—Witten invariant associated with the graphs G, G; in the previous ex-
ample, but with no assumption on the graph other than negative definiteness.
In place of the geometric genus, the formula contains a normalized version of
the Seiberg—Witten invariant of the canonical spin® structure on the associated
three dimensional manifold. The error term is, as in the previous example, the
periodic constant of Z§(t,).

2.11 The spectrum

In this section we will recall some facts about the spectrum, a numerical in-
variant coming from Hodge theory. Its construction would require a lengthier
treatment than is possible here, so we only mention the main results required.
The most important fact we need about the spectrum is proposition 2.11.9,
which allows us to calculate part of the spectrum from the Newton diagram. In
section 6, we will show how to recover this part of the spectrum directly, given
only the knowledge of the resolution graph, as well as the divisor of the function
X1X2T3.

2.11.1. We start with a very small account of the results leading to the mixed
Hodge structure on the cohomology groups of the Milnor fiber. Mixed Hodge
structures were introduced by Deligne in [5, 6] where he constructs a mixed
Hodge structure on the cohomology groups of arbitrary algebraic varieties, gen-
eralizing the Hodge decomposition on Kéahler manifolds [16]. Previously, Grif-
fiths, Schmid [12, 13, 14, 65] and others had studied variations of Hodge struc-
tures arising from deformations of complex manifolds, as well as the case of flat
maps, possibly with singular fibers. For these, a limit of the Hodge structures
appears (in a suitable sense), but this must be viewed as a mixed Hodge struc-
ture, rather than a pure Hodge structure. In [66], Steenbrink considers the same
problem from a different viewpoint and constructs a mixed Hodge complex cal-
culating this limit. In [67], these results are combined with others to construct
a limit mixed Hodge structure on the cohomology groups of the Milnor fiber of
an isolated hypersurface singularity.

2.11.2. Let f : (C3,0) — (C,0) be a singular map germ defining an isolated
hypersurface singularity (X,0) in C3. Assume that Y C C? is a subset yielding a
good representative of the Milnor fibration, where D C C is some small disc (see
e.g. [26]). Setting D* = D\ {0} and Y* =Y\ f~1(0) we obtain a locally trivial
fiber bundle Y* — D* whose fiber is the Milnor fiber. For a ¢t € D*, denote by
my : Yy = Y; the geometric monodromy, and T} : H%(Y;,C) — H?(Y;,C) the
induced map on cohomology, the algebraic monodromy. We can assume that
together, these form a diffeomorphism m* : Y* — Y*.

Take D* as the universal covering space of the punctured disc, and set Y, =

Y* xp+~ D*. Concretely, we may take D* as an upper half plane, with the
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covering map given by the exponential function. We obtain canonical maps
k:Ye =Y and fo : Yoo — D*, as well as monodromy transformations m :
Yoo — Yoo and m* : D* — D* satisfying foomeo = m* foo and kmee = m*k.
This is summarized in the following diagram.

ey

I

w (bt —— D~}

The space D* is a half plane in C, and so, in particular, it is contractible. There-
fore, the space Yo 2 Y; x D* has the same homotopy type as any Milnor fiber
Y;. Furthermore, this homotopy equivalence is determined uniquely modulo the
monodrormy.

2.11.3 Proposition (Monodromy theorem [18, 65]). The eigenvalues of the
monodromy operator Ts, : H* (Yoo, C) — H?(Ys, C) are roots of unity, that is,
there is an N > 0 so that T is unipotent. Furthermore, for such an N, we
have (TY —id)® = 0.

2.11.4. In [67], Steenbrink constructs a mixed Hodge structure on the vanish-
ing cohomology H?*(Ys.). This means that on H?(Y,,,Q) one has the weight
filtration

0=WoH?(Yso,Q) C ... C Wop,H*(Yao, Q) = H*(Yao, Q)
and on H%(Y,,,C), the Hodge filtration
H*(Ye,C) = FyH?*(Yso,C) D ... D F,H?*(Y4,,C) =0

where in our case, n = 2. Furthermore, these susbspaces are invariant under the
semisimple part of the monodromy operator T,,. The filtrations induce graded
objects

Wi H* (Yoo, Q)

FPHQ(Y 0)
W rr2 GrP ”2 Y. . C)= oo
Gr, H () oo7Q) = Wis F[Z('}r ,Q), I'; ( 00 ) =~ ol Hz(}r ,(C)

Furthermore, as a subquotient of H?(Ya,C), the space Gry H?(Y,Q) ® C
inherits the Hodge filtration making it a Hodge structure of weight k. For
each of these spaces, we denote by (-), the generalized eigenspace of T,, with
eigenvalue .

2.11.5 Definition. The spectrum of an isolated hypersurface singularity de-
fined by f € Ogs  is the element

Sp(£,0) = 33 dime(Grly H(Yac, C))a (log_A Y- p) cZ[Q. (2.8

271
Ap

where we choose —1 < lgi’\ < 0, and (a) denotes the element corresponding

to a € Q in the group ring Z[Q]. This choice is made possible precisely by
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proposition 2.11.3 For any subset I C Q we define Sp;(f,0) = m;(Sp(f,0)),
where 7y : Z[Q] — Z[Q) is the projection sending (a) to (a) if a € I, but to 0 if
a ¢ I. For simplicity, we also set Sp<,(f,0) = Sp)_« o)(f,0)-

Since the coefficients in eq. 2.8 are nonnegative integers, we may also write
Sp(f,0) = ;‘:1(lj) where ly,...,0, € Q satisfy Iy < ... < ,. Here, p =
dim¢ (Yo, €) is the Milnor number.

2.11.6. The mixed Hodge structure on the vanishing cohomology induces Hodge

numbers
hP4 = dimc Gr%, Gr,), , H?(Yao, C). (2.9)

The weight and Hodge filtrations are invariant under the semisimple part of
the monodromy, see [67] remark (3.11). In particular, it induces an action on
the space on the right hand side of eq. 2.9. This gives rise to equivariant Hodge
numbers

RY? = dime (Grf, Grp+q H*(Yeo, 0)), (2.10)

for A € C. Equivalently to the definition above, we now have
o (logA | ntl~alq(
Z hp ! ( ) Z Z hexp 27Tza
PygsA a€Q g€z
2.11.7 Remark. The spectrum is an invariant that depends only on the Hodge
filtration. A stronger invariant, the spectral pairs, take the weight filtration
into account as well. In fact, the spectral pairs encode the same data as the

equivariant Hodge numbers. We will, however, not make any use of the spectral
pairs.

2.11.8 Proposition ([64] (7.3)). We have the following properties.

(i) The spectrum is symmetric around % More precisely, we have Sp(f,0) =
tSp(f,0), where v : Z[Q] — Z[Q)] is the group automorphism sending (a)
to (3 —a) for a € Q.

(i) The spectrum is contained in the interval | — 1,2[. More precisely, for
every monomial (a) in the sum eq. 2.8 with nonzero coefficient we have
—-1<a<?2.

O

2.11.9 Proposition (Saito [63]). Let f € Oc¢s o define an isolated hypersurface
singularity (X,0) C (C3,0). Assume further more that f has Newton non-
degenerate principal part (for definitions of diagrams and nondegeneracy, see
subsection 3.1, for the Newton filtration, see subsection 3.5). The part of the
spectrum lying in | — 1,0] is given by the Newton weight function of monomials
containing all three variables which are under the Newton diagram. That is, we
have Sp<(f,0) = Zpezgomr_(f)(ﬁp(xp) - 1).

2.12 Statement of results

Assume that f € Ocs g = C{x1,x2, 23} is the germ of a holomorphic function
in three variables defining an isolated hypersurface singularity (X,0) at the
origin. Assume, furthermore, that f has Newton nondegenerate principal part
(see subsection 3.1) and that that the link M of (X,0) is a rational homology
sphere. We denote by p, the geometric genus of (X,0).
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2.12.1 Theorem. I There exists as computation sequence (Z1)¥_, to Zx on
the minimal good resolution graph of M satisfying

k
Zr + |V
Py = Zmax{o, (_ZszEv(z)) + 1} = SW(])\/[(Ucan) _ KTH
=0

Furthermore, this computation sequence can easily be computed using the min-
imal resolution graph, see definition 5.2.2.

II Assuming that the Newton diagram T(f) is convenient (see definition 3.1.8)
and that G is the resolution graph obtained from Oka’s algorithm using this
diagram (see 3.2.3), there exists a computation sequence (Z11)F_, to wt(f) sat-
isfying

P(t) => max{0,(—Z/", Ey)) + 11"
=0

where P (t) is the Poincaré series associated to the Newton filtration on Ox o
(see subsection 3.5), (ZH ) is the continuation of (Z'1) to infinity as in def-
inition 2.8.1 and we set r; = mv(i)(ZiH) for each © > 0. Furthermore, the part
of the spectrum Sp<(f,0) is obtained from this series by the equality

Spgo(fa O) = P?,pOI(t71)7

where we identify the ring of Laurent—Puiseux series Z[til/oo] with the group

ring Z|Q]. Furthermore, this sequence can easily be computed, assuming only
the knowledge of G, the resolution graph, and the cycle wt(x1z223), see defini-
tion 5.2.2.

IIT Assuming that the Newton diagram T'(f) is convenient (see definition 3.1.8)
and that G is the resolution graph obtained from Oka’s algorithm using this
diagram (see 3.2.3), there exists a computation sequence (ZI11)¥_ to 2(Zx —F)
satisfying

k—1

Sp<o(f,0) = Y max{0, (Z{"', E,)) + 1}(ri) € Z[Q),
i=0

where, for each i we set

M) (ZHT) + Wy (21203)

Furthermore, this sequence can easily be computed, assuming only the knowledge
of G, the resolution graph, and the cycle wt(z1x2x3), see definition 5.2.2.

i =

Proof. See theorems 6.1.1, 6.2.1 and 7.0.2. O

2.12.2 Remark. The result p, = Zf:o max{0, (—Z{, E,;) + 1} in I in the
theorem above can be found in a joint article of Némethi and the author [46].
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3 Newton diagrams and nondegeneracy

In this section we will recall the definition of a Newton diagram associated
with a function f € Ogcs, the nondegeneracy condition and some important
properties of singularities defined by nondegenerate functions.

In what follows, f is a function germ around the origin in C3 and (X,0) is
the germ of the zero set of f. We will assume that X has an isolated singu-
larity at the origin (see 3.1.2), that f has Newton nondegenerate principal part
(definition 3.1.1) and that the link is a rational homology sphere.

3.1 Diagrams and nondegeneracy

Write f = 37 ns ap@P. We define the support of f as supp(f) = {p e N?|a, #0}.
The Newton polytope T (f) of f is the convex closure of Upesupp(f)p+R§0. The
Newton diagram T'(f) of f is the union of compact two dimensional faces of the
Newton polytope. Here, a face F' C I';(f) means the minimal set of any linear
function R® — R. We also denote by I'_(f) the union of segments joining the
origin in R? with I'(f).

3.1.1 Definition. Let F' C I'(f) be a compact face of the Newton polytope
and define fr(z) = > cpapa?. We say that f is nondegenerate with respect to
F if the set of equations a%ifp = 0 has no solution in (C*)3. We say that f
has Newton nondegenerate principal part if f is nondegenerate with respect to
every nonempty face of I'(f).

3.1.2 Lemma (Koushnirenko [17] 1.13). Let f : (C3,0) — (C,0) define a
singularity (X,0) and assume that f has Newton nondegenerate principal part.
Then X has an isolated singularity at O if and only if T'(f) contains a point
on each coordinate hyperplane and a point in distance at most 1 from each
coordinate axis. O

3.1.3 Definition. We say that f € Ocs g is convenient (f. commode) if any of
the following equivalent conditions is fulfilled.

% supp(f) contains an element of each coordinate axis.
#® The set RS\ Ty (f) is bounded.

® Ryl (f) = R3,.

3.2 Oka’s algorithm

In this section we will use the Newton diagram I'(f) to construct a graph G.
Oka proved that this graph is the graph of a resolution of X, obtained by a toric
modification of C? [56]. We will use the notation from 2.2 for this resolution.

Recall that for integers b1, ...,bs we have the negative continued fraction
1
[b1,...,bs] = b1 —
b2 -
Further, the string bq,...,bs is referred to as the negative continued fraction

ezpansion of the rational number above. If we require b; > 2 for j > 2, then the
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expansion is unique. As we will never make use of positive continued fraction,

we will often simply say continued fraction. See [60] for a detailed discussion of

continued fractions and how they relate to the topology of surface singularities.
The statements in the following definition are not difficult to prove.

3.2.1 Definition. Let A be a free abelian group of finite rank and take distinct
primitive elements a,b € A.

#® The determinant a(a,b) of a,b is the greatest common divisor of maximal
minors of the matrix whose rows are given by the coordinate vectors of a
and b with respect to some basis of A.

#® If a(a,b) > 1, then we define the denominator 5(a,b) of a,b as the unique
integer 0 < 8(a,b) < a(a,b) for which S(a,b)a + b has content «(a,b).

#® If a(a,b) = 1, we choose the denominator to be 3(a,b) =1 or B(a,b) = 0.

#® If a(a,b) > 1, then the selfintersection numbers associated with a, b are de-
fined as —bq,...,—bs, where by, ..., by is the continued fraction expansion

of a(a,b)/B(a,b).

# The canonical primitive sequence associated with a,b is the unique se-
quence ay,...,as € A satisfying a;_1 — bja; + a;41 = 0fori =1,... s,
where ag = a and ag41 = b.

% If a(a,b) = 1 and we choose 3(a,b) = 1, then the selfintersection numbers
associated with a,b consist of a single —1, and the canonical primitive
sequence is a1 = a + b. If we choose ((a,b) = 0, then both sequences are
empty.

We refer to a(a,b)/B(a,b) as the fraction associated with a,b € A.

3.2.2 Remark. (i) We have ged(a(a,b), 8(a,b)) = 1. Thus, the fraction asso-
ciated with a, b determines the determinant and the denominator.

(if) The canonical primitive sequence can be calculated as follows. First, we
have a; = (B(a,b)a + b)/a(a,b). Then the other elements can be calculated
recursively by the defining equations.

3.2.3. We are now ready to construct the graph G. First, let A* be a set
indexing the two dimensional faces of 'y (f), that is, let {F}, |n € N*} be the
set of two dimensional faces of ' (f). Let A be the subset of N* corresponding
to compact faces. For each n € N'* let £,, be the unique integral primitive linear
function on R?® having F), as its minimal set on I'y(f). For any n € N and
n’ € N*, let t,, be the one dimensional combinatorial volume of F,, N F,,.
This is the same as the number of components of F,, N F,,/ \ Z3. We also define
= (ly, ly) and By, = B(Un, £n), where, if o, ,,» = 1, we choose 3, ,,» =0
ifn’ € N,but B, =1if n’ € N*\ N.

The graph G* is obtained as follows. First take A/* as vertex set. Then, for
any n € N and n’ € N*, add ¢, ,,» copies of the bamboo depicted in fig. 1.

Let ¢,,,...,¢,, be the canonical primitive sequence associated with ¢, ¢, .
We then have elements ¢, associated with all vertices of the graph G*. Let V*
be the set of vertices of G* and for v € V*, let V;; be the set of neighbours of v
in G*.
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—by, —by, —b,,
[ ® ® @ ®
n U1 Vo Ce Vg n

Figure 1: A bamboo.

Let V be the set of vertices not in N*\ A . Then, define G as the subgraph of
G* generated by the vertex set V. The vertices vy, .. .,vs (as in fig. 1) are labelled
with the selfintersection numbers associated with ¢,,, £,/ , taken as (primitive)
elements of Hom(Z3,Z). For n € N we define the selfintersection number —b,,
as the unique solution of the equation

—buln+ Yy =0. (3.1)

ueV}

Thus, for every v € V we have a selfintersection number —b,. Furthermore, by
the definition of b, for v € V\ N, eq. 3.1 holds with n replaced by wv.

For G to be a plumbing graph, we must provide genera [g,] for all v € V.
For n € NV, let g, be the number of integral points in the relative interior of the
polygon F,,. All other vertices get genus 0.

3.2.4 Definition. In addition to the linear functions ¢, for v € V* defined
above, let £, be the standard coordinate functions for ¢ = 1,2, 3, that is, £.(p) =

pe for p = (p1,p2,p3) € R,

3.2.5 Definition. Forn € N, let N} = {n’ € N* |t,, v > 0} and N,, = N'NN.
IfneN,n €N and B, # 0, let up, ,y = vy as in fig. 1. If B, ,» = 0, let
Up,pr =1,

3.2.6 Remark. (i) Note that 3, ,, = 0 can only happen if n’ € N, thus we
always have u, ,,» € V. In particular, we have V} =V, for n € .

(ii) If ¢, > 1, we must a neighbour w,,_, out of a set of ¢, , elements. By
construction, however, the functional ¢, is well defined, for any such choice.
The numbers m,(1(1)) (see lemma 7.1.6) and m,(Z), where x(Z) = Z (see
subsection 5.1), are also well defined in this case.

3.2.7 Remark. For n € V, the existence of b, is not obvious, but can be seen
as follows. Let H be the hyperplane in R? defined by ¢, = m, where m is
the value of ¢, on F,. It follows from the definition of the canonical primitive
sequence that for any u € V,,, the affine function ¢, |y is in fact primitive, and its
minimal set on Fj, is F},NF,,/, where u is assumed to lie on a bamboo connecting
n and n’ € N*. We now see that there is a natural correspondence between
the neighbours v € V,, and the primitive segments of the boundary 0F,. It is
simple to show that under these conditions, the sum ) ¢,|x is constant (see
e.g. proof of theorem 4.2.2). Since ¢,, is by definition also constant on H, the
existence of b, follows. Furthermore, since ¢, is primitive, we have b, € Z.
Finally, since all ¢, are positive on the open positive quadrant, we must have
b, > 0. In [56], the number appears as the selfintersection of a divisor and
eq. 3.1 is derived from this.
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3.2.8 Lemma. Let n € N and n' € N,,. Then, for u = u,, we have
U Mu(Z —E) = Bnwmn(Zx —E)+my (Zx — E). Similarly, if n’ € NJ\N,
then o pmy(Zx — E) = Bpnmn(Zx — E) — 1.

Proof. This follows from the more general lemma 7.1.2, since (Zx — E,E,) =0
if §, = 2. O

3.2.9 Proposition. Take f € Oc¢s o as above with Newton nondegenerate prin-
cipal part defining an isolated hypersurface singularity (X,0). The link of (X,0)
is a rational homology sphere if and only if T(f) NZ3, = 0.

Proof. Let g and ¢ be as in proposition 2.1.5. We see immediately that g = 0 if
and only if for each n € N, the face F,, contains no integral points in its relative
interior.

If ¢ # 0, then we must have at least one of the following possibilities: there
are ni,ny € N with t,, ,, > 1, or, there are n1,...,ns € N so that t,, ,,, #0
for i = 1,...,s (where we set ngy1 = n1) and N_; F,, is a zero dimensional
face of T'(f). In the first case, F,,, N F,,, C I'(f) contains an integral point with
positive coordinates and in the second case the point in N;_, F},, is such a point.

Assume now that (X, 0) is isolated and has rational homology sphere link,
then ¢, ,,» < 1 for all n,n’ € N and g, = 0 for all n € N, so p must lie on
the boundary of T'(f). But every segment of the boundary of T'(f) which does
is not contained in some coordinate hyperplane has the form [(a,0,b), (0,1, ¢)]
for some a,b,c € N modulo permutation of coordinates. But then all integral
points on the boundary of I'( f) lie on some coordinate hyperplane, and we have
L(f)NZ3,=0. O

We end this subsection with the following result which can greatly simplify
calculations.

3.2.10 Proposition. Let [p1,p2] C F, be an edge of one of the faces of the
Newton diagram T(f), thus, [p1,p2] = F, N Fy, for some n' € N¥. Let q1,q2 €
OF,NZ3 so that [p1,q1] and [p2, g2] are the primitive segments adjacent to [py, ps]
in OF,, and set a; = Ly (1 —p1) and ag = Ly (g2 —p2). If p1 is a regular vertex
of F, then o, v = ai1lag (see definition 4.1.2 for regular vertices).

Proof. A simple calculation shows that o, - can be identified as the content of
the affine function £, | H=(wt(s)), that is, the smallest positive integer c for which
there is an integer 0 < r < ¢ and an integral functional ¢ : H (wt(f)) — R
so that g”"HTT(Wt(f)) = ¢l + r. It follows that there are ai,as € N so that
Q1 = 10y, and ag = agay, . Since p; is a regular vertex of F,,, the points
p1,p2, 1 form an integral affine basis for H (wt(f)), hence a1 = 1, and so
01 = Qpp and ag = a0y p- O

3.2.11 Remark. Assume that (X, 0) is as in proposition 3.2.9 and that the link
of (X,0) is a rational homology sphere. Then, by corollary 4.1.7, any edge of a
face F,, of the Newton diagram contains a regular vertex of F), as an endpoint.

3.2.12 Example. Let f(z1,72,23) = 2] + 2323 + 230 + 2323 + 2325 + 25. A
simple calculation shows that the Newton polygon is given by the inequalities

((11,5,7),-) > 43, ((6,3,4),-) > 24, ((32,12,21),-) > 120, ((6,3,4),-) > 48,
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as a subset of the positive octant. In this case, the set A/ contains four elements,
and the set A/* contains three elements, one corresponding to each coordinate
hyperplane. On the left hand side of fig. 2, we see the Newton diagram I'(f).
On the right hand side, circles represent compact faces of the Newton polygon
and crosses represent noncompact ones. The segments joining n and n’ in this
picture represent ¢, ,». By calculation, we obtain the plumbing graph shown

Zs3

X2

T

Figure 2: A Newton diagram and its dual graph in the plane.

in fig. 3, with additional vertices corresponding to the elements of N'* \ .

—3 -1 -2 (1,0,0)

(0,1,0)

Figure 3: A plumbing graph obtained by Oka’s algorithm.

3.3 On minimality

In this subsection, we will recall some results on minimality of plumbing graphs
on one hand, and of Newton diagrams on the other. In [17], Kouchnirenko
introduces the condition of convenience, (see definition 3.1.3), the assumption
of which can be of great convenience, but does not actually reduce the generality
when working with isolated singularities. This is because for a given f € Ogcs
with Newton nondegenerate principal part, defining an isolated singularity, the
function f + Zle x¢, for d large enough, defines an analytically equivalent
singularity, and the Newton diagram of the new function is convenient.

3.3.1. In [48], Neumann showed that if M is an oriented three dimensional
manifold which can be represented by a plumbing graph, then there is a unique
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minimal graph representing M. If the intersection matrix associated with the
plumbing graph G is negative definite, then minimality, in this sense, means that
G contains no vertex v with ¢, < 2 and Eg = —1. A minimal representative
can be obtained by blowing down —1 curves whenever possible.

3.3.2. In [3], Braun and Némethi provided a condition for a Newton diagram
to be minimal and showed that every singularity defined by a function with a
Newton nondegenerate principal part is topologically equivalent to one whose
Newton diagram is minimal. In general, these minimal diagrams are not conve-
nient. They do, however, have the advantage that if one applies Oka’s algorithm
on a minimal diagram as in 3.2.3, then the output is a minimal plumbing graph.

The following proposition essentially repeats some of the results of [3]:

3.3.3 Proposition. Let f € O¢s o have Newton nondegenerate principal part,
defining an isolated singularity at O with a rational homology sphere link, which
is not an A,, singularity. Let G be the resolution graph constructed in 3.2.3 from

I(f)-

(i) There is a bijective correspondence between nodes n € N in G and two
dimensional faces F, C T'(f) and for each n € N there is a bijection
between neighbours uw € V,, of n and primitive segments of the boundary
OF,, of F,. In particular, Vol; (OF,,) = 0.

(i1) IfT(f) is minimal in the sense of definition 3.8.5 of [3], then G is minimal
in the sense of 3.3.1

Proof. (i) follows directly from construction. For (ii), however, one must prove
that if n € N and n’ € N* \ N with ¢, ,, > 1, then «, ,» > 1. This is proved
in [3] Proposition 3.3.11. O

3.4 Association of cycles and polytopes

In this section we will describe two methods of associating a cycle to a function.
On the other hand, we will associate a Newton polytope to any cycle which will
allow us to use the geometry of the Newton diagram to prove properties of the
computation sequences defined in section 5.

3.4.1 Definition. Let g € Ocs ¢ and denote by g the corresponding element in
Ox,0 = Ocs,0/(f)

# For any v € V* let wt,(g) = minyesupp(g) fo(p) if g # 0, otherwise set
wt,(g) = oo. Further, let wt(g) =3 .\, wty(9)E, € L.

#® For any v € V* let wt,(§) = maxpeo., , Wto(g + hf) if g # 0, otherwise
let wt, (g) = oo. Further, let wt(g) = >_ o\, wt,(9)E, € L.

% For any v € V, let div, be the divisorial valuation associated with the
exceptional divisor £,. Further, let div(g) = div(g) = >,y divy(g)Ey €
L.
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3.4.2 Remark. To any v € V there corresponds a component, say D,, of the
exceptional divisor of the modification of C? inducing the resolution of X. Then
wt, is the divisorial valuation on Ogs  associated with D,. However, wt and
div are generally not the same on Ox g, see 6.1.2.

3.4.3 Definition. Let Z € L and v € V. Start by defining the hyperplane and
halfspace

(Z)={peR®|t, =m,(2)}
(Z)={peR®|l, >m,(2)}.

=
\VARI!

Since H;(Z) = {pe€ R3|€U =my(Z)} only depends on the number m =
my(Z), we also set H, (m) = H, (Z) and HZ(m) = HZ(Z). We define the
Newton polytope of Z as

I (Z)=R%,n () H(2).
veV

The face corresponding to a node n € A is
Fu(Z) = T+(2) N HZ(2).
The polygon corresponding to n € A is

F°(2) = HZ(2)n () HZ(2).
ueV,

3.4.4 Remark. (i) Note that for any Z € L, the Newton polytope T'y(Z)
and its faces F,(Z) are, by definition, subsets of the positive octant R?’ZU. The
polygons F"P(Z), however, may contain points with negative coordinates.

(ii) By remark 3.2.6(i) we have V,, = V} for any n € N. Therefore, F2"(Z) is
always a finite polygon (or empty).

3.4.5. We finish this subsection by a well known formula for the anticanonical
cycle Zk.

3.4.6 Proposition (Merle and Teissier [29] 2.1.1, Oka [56] 9.1). We have Zx —
E = Wt(f) — Wt(l’l’l}gfﬂg). O

3.4.7 Corollary. We have I' . (Zx — E) = (I'+(f) — (1,1,1)) N R%O.

3.5 The Newton filtration

Given a convenient f € Og¢s o Kouchnirenko defines a filtration on Ogs o called
the Newton filtration [17]. In this subsection we provide an equivalent definition.

3.5.1 Definition. Let I'(f) C R? be the Newton diagram of a function f € Ogs.
Recall the functions ¢,, for n € N defined in subsection 3.2. For p € N3, we set
l¢(p) = minpen Ln(p)/ wtn(f). For any 0 # g € Ocs o representing g € Ox o,
we set

= min Z¢(p), g) = max +h).
©(9) jclin (), »(3) hem@(g )
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We refer to both £; an ¢ as the Newton weight function. This yields the Newton
filtrations on O¢s o and Ox o

Aca(r) ={g € Ocso|p(g) 27}, Ax(r)={g € Ox,l¢(9) 21}
for r € Q and the associated graded rings

Acs = @TACS7T7 A({}’*,r = Aca(r)/ User Acs(s),
Ax = EBTAX,m AX,r =Ax (T)/ Us<r AX(‘S)

The associated Poincaré series are given as

Pé (t) = Z dimc Ags 1", P}?(t) = Z dimc Ax ,t".
reQ reQ

3.5.2 Remark. It follows that there is an M € Z so that if Ags . # 0 then
T € ﬁN. In [17], the Newton filtration is normalized in such a way that for r
big, we have Acs . # 0 if and only if » € N. For the rest of this subsection, we
will fix this M and use it in proofs.

3.5.3 Lemma. We have P (t) = > pens 2@ and PR(t) = (1 —t) P (t).

Proof. Note that for any g € O¢s o we have ¢(fg) = ¢(g) + 1. Thus, for any
r € Q we have a sequence

00— AC3,T71 L> A(Cs,r AX,T‘ 0

whose exactness proves the statement. The rows of the diagram

0—— Acs (T‘—l—‘y—f)4>AC3(T—1)—>AC37T,1—>0

0 Acs (7‘ + ﬁ) Acs (7”) A(C*,r 0
0 Ax (r+ %) Ax (r) Ax 0
0 0 0

are exact and the columns are complexes. Furthermore, the first two columns
are exact. The exactness of the third column now follows from the long exact
sequence. 0

3.5.4 Theorem. Identify the spectrum (see subsection 2.11) with its image
under the canonical isomorphism Z[til/“] >~ Z[Q]. The polynomial part of
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the Poincaré series associated with the Newton filtration then recovers the part
Sp<o(f,0) of the spectrum via the formula

Sp<o(f,0) = PP (7).

Proof. By proposition 2.11.9, it is enough to prove

Py = > el (3.2)
p€eZ ,NT_(f)

First assume that I'(f) is convenient. Take an integral triangulation of T'(f).
This can be achieved by taking any triangular face of I'(f) as a triangle, but
subdividing any trapezoid into two triangles. Let (o) be the family of cells in this
triangulation which are not contained in any coordinate hyperplane. Thus, o is
either a triangle, or the one dimensional intersection of two adjacent triangles.
For each o let P,(t) = Zpemza t4®) and similarly for any segment 7. Then,
similarly as in [17], using lemma 3.5.3, we find

PA() = 3 (-1 P, (1) (3.3)

o

hence

PR = (1-1) (Z(l)dlm“mt)) . (3.4)
Now, the function ¢ takes constant value 1 on any o, thus lemma 2.10.6 imme-
diately gives eq. 3.2.

Assume now that I'(f) is not convenient, say, I'_(f) does not intersect the
1 axis. Define the series P(t) as the right hand side of eq. 3.3. Using the proof
above, we see that ((1—t)P(t))P°! is the right hand side of eq. 3.2. It is therefore
enough to prove PaP°(t) = ((1 — t)P(t))P°!

For simplicity, let us assume that I'_ (f) intersects the z2 and x3 axis. Then,
modulo permutation of the last two coordinates, there is an edge in OT'(f) of
the form [g,r] where ¢ = (¢1,0,¢2) and p = (r1,1,0) with ¢; + 71 > 0. We find

Po(t) = P(t)= 3 70— Y7 ¢CD
peCnZ3 peC’'NzZ3
where C' = R>¢((1,0,0),¢,7) and C’ = Rx>o(g,r). It is now enough to prove
pol pol
1-1 Y @] =0, [@-t Y ] =0 (35
peCNZ3 peC'NZ3

For the first one, note that as abstract semigroups, we have C N Z3* = (C” N
Z3) & N(r), where C" = R>¢(q, (1,0,0)), and ¢(z") = 1. Therefore, we have.

(1 _ t) Z t@(l’p) — Z t@(l’p)_
peCNZ3 peC’’'NZ3

The result therefore follows from lemma 2.10.6. The second equality in eq. 3.5

also follows from lemma 2.10.6, since the half parallelogram S = {p € (C")° | ¢(z?) > 1}

contains no integral points. This is because for p = (p1,p2,p3) € S we have
0<py <l O]
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3.6 The anatomy of Newton diagrams

In this subsection we will recall some classification results of Braun and Némethi
[3] which will serve as basis for the case-by-case analysis in section 7. We will
also fix some notation.

3.6.1 Definition. Let n € N. A leg of n is a sequence of vertices vy,...,vs € V
so that for j = 1,...,s — 1 we have V,, = {v;_1,v;41} where we set vy = n
and 6,, = 1. In this case, vy is called the end of the leg. The set of all ends
of legs of n is denoted by &,, and we set &€ = Upen&y. If e € &, then there
are unique n, € N and n} € N* \ N so that e € &, and e lies on the bamboo
connecting n. and n’. For e = v; € £ as above, define a./B. = [by,,--.,by.] as
the fraction of e, where a., . € N and ged(ae, fe) = 1. Thus, ae = ay_ - and
Be = Bn,n:- Define also ue = up_nx. A leg group is a maximal nonempty set
of legs for which the ratio a./f. is fixed, where e is the end of the leg.

3.6.2 Definition. #® A two dimensional triangular face of T'(f) is called a
central triangle if it intersects all three coordinate hyperplanes, but none
of the coordinate axis. The corresponding node is called a central node.

% A trapezoid in T'(f) is a face whose vertices (modulo permutation) are of
the form (Oap7 a): (Qa 0, a): (Tla T2, 0)7 (Tlla 7J2a 0) where (T/17 TJQ) O)_(Th T2, 0) =
k(—q,p,0) for some k > 0.

% An edge in I' (a one dimensional face) is called a central edge if it intersects
all three coordinate hyperplanes.
A central face is a central triangle or a trapezoid. The corresponding node
is a central node. .

3.6.3 Definition. The collection of faces of I'(f) (of positive dimension) whose
vertices lie on the union of two of the coordinate hyperplanes is called an arm.
If the intersection of the two planes is the z; axis, then we say that the arm
goes in the direction of the x; axis. An arm is degenerate if it does not contain
a two dimensional face.

3.6.4 Proposition (Braun and Némethi [3] Proposition 2.3.9). Let f € O¢s ¢ be
a function germ with Newton nondegenerate principal part, defining an isolated
singularity (X, 0) with a rational homology sphere link. Then exactly one of the
following hold (see 8.2.8 for definition of t,, ,,+):

(i) T'(f) has a central face and three (possibly degenerate) arms. We have
N =Ul_{nf,...,n%} where ny = ng = ny is the central face and the

arm in the dzrectwn of the xz,, axis is I (m)U UF o) in the nondegenerate
()

case, or the corresponding edge of Fno in the degenemte case. We have
t ,flzf{rr’}f{01}ornfn and|rfr’|*1andt ,v/f()

nn

otherwzse (recall definiton of t, , in 3.2.3).

(ii) There exist ¢ > O central edges. We have N' = UZ_{nf, ..., n%.} with
n, =mn2_, if 1 <r <c—1. Further, we have t , . =1 if x =r" and

r 7
!

Ir—7|=1o0rk#k and|r—(c—1")] =1 andtnm = =0 otherwise.

In case (i), if jn > ¢, we set nfi =n", where {x, '} = {1,2}.
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3.6.5 Proposition. Let n, =nlf, r =1,...,j = j% be an arm as in proposi-
tion 3.6.4, (i) or (ii). Assume that the arm goes in the direction of xs.

(i) For any 1 < r < j, the numbers a., 8. are independent of the choice of
e € &y, Furthermore, we have either £,,- = {1 for alle € &, _, or £y = {3
for alle € &,,. That is, n, has a unique leg group.

(1i) There are two distinct integral functions 21,572 :R?® — R so that {En:

eE Enj} =
{171,@2}. After possibly permuting the coordinates x1, 2, we have {1 = {;
and either {y = Uy, or there is an a € Z>q so that lo = aly + {;.

(iii) With 01,05 as above, set ST)L‘], = {e € &, |Uny = Ze} for A =1,2. We then

have integers ay, By for A = 1,2 so that ae = ay and B. = By fore € Sé‘j.

That is, n, has exactly two leg groups. Furthermore, if ly = ls, then
ged(ag, an) =1, but if by = als + 41, then ag|as.

4 'Two dimensional real affine geometry

In this section we describe some technical results about polygons in affine spaces.
If H C R3 is a hyperplane given by an affine equation with integral coefficients
so that HNZ3 # (), then there exists an affine isomorphism H — R?, restricting
to an isomorphism HNZ3 — Z2. When dealing with such hyperplanes in R3, we
implicitly assume such an identification given, which allows us to apply results
obtained in R2.

4.1 General theory and classification

4.1.1 Definition. An integral polygon F is the convex hull conv(P) of a finite
set of integral points spanning R? as an affine space. A vertex of F is an element
p € P so that conv(P \ {p}) # F. An edge of F is a segment contained in the
boundary of F' whose endpoints are vertices.

4.1.2 Definition. A regular vertex p of F is a vertex having the property that
primitive vectors parallel to the two boundary segments having p as an endpoint
form an integral basis of R?. A vertex which is not regular is called singular.

The boundary dF and open kernel F° of a polygon F' will have their usual
meaning and an internal point of F is nothing but an element of F°. By
an integral affine isomorphism we mean an R-affine automorphism R? — R?
restricting to a Z-affine automorphism Z? — Z2.

4.1.3 Definition. An integral polygon F' C R? is empty if F° NZ2 = (.

4.1.4 Example. If F,, C T'(f) as above where f has Newton nondegenerate
principal part and defines an isolated singularity with a rational homology sphere
link, then F), is an empty polygon in the hyperplane H_ (wt(f)).

4.1.5 Proposition. Let F C R? be an empty integral polygon. Then, after,
perhaps, applying an integral affine isomorphism on RZ, one of the following
holds.

# Big triangle: We have F = conv{(0,0), (2,0),(0,2)}.
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# t-triangle: We have F = conv{(0,0), (¢,0), (0,1)} for some t > 0.
# t-trapezoid: We have F = conv{(0,0), (¢,0),(0,1),(1,1)} for some t > 0.

*® t, s-trapezoid: We have F' = conv{(0,0), (¢,0),(0,1),(s,1)} for some t >
s> 1.

O

4.1.6 Definition. Given a t-trapezoid F as above, with ¢ > 1, the edge
[(0,1),(1,1)] is called the top edge. This edge can be identified independently of
coordinates as the unique edge of length one, whose adjacend edges both have
lenth one.

4.1.7 Corollary. If F C R? is an empty polygon and p € F is a singular
vertex, then F' is a t-triangle with t > 1, and assuming F is of the form given
in proposition 4.1.5, we have p = (0,1). Equivalently, F' is a triangle and the
opposing edge to p is not primitive. O

4.1.8 Example. (i) An exercise shows that the only Newton diagrams as in
example 4.1.4 containing big triangles are T'(z3% + 23 + 23¢) where a,b,c are
pairwise coprime positive integers.

(ii) Similarly, A Newton diagram as in example 4.1.4 can not contain a t, s-

trapezoid. In fact, in [3], Braun and Némethi show that such a diagram can
contain at most one t-trapezoid.

4.1.9 Definition. Let F € R? be an integral polygon and S C F an edge. The
unique primitive integral affine function ¢g : R? — R satisfying £g|s = 0 and
ls|Fp > 0 is called the support function of S with respect to F'.

More generally, if » € Ry, then we have the diluted polygon rF which is
not necessarily integral, but the term edge retains its meaning. The support
function of an edge S C rF is the unique primitive integral affine function
ls: R? - R satisfying fs|g =mg E} — 1,0] and és|,«F >msg.

4.1.10 Lemma. Let p,q,7 € F be vertices of an empty polygon so that the
segments [p,q] and [q,r] are edges of F, [p,q] is primitive and q is regular.
Then é[w] (p) =1.

Proof. This follows more or less from definition. O

4.2 Counting lattice points in diluted polygons

4.2.1 Definition. Let F' be an empty integral polygon with an edge S = [p,q] C
OF'. The content cg of S is the content of the vector ¢ — p.

4.2.2 Theorem. Let F C R? be an empty integral polygon and r € Ry. Fur-
thermore, for any edge S C OF with {.s|.s = 0, choose e € {0,1}, for other
edges let e = 0. Let F~ = F \ Usq=1S. Then, there is a number c.p— € Z

satisfying Y gcop Cs(lrs —€s) = crp- and

|rF~ NZ2% ifr <1,

max{0,c,p- +1} =
x{0. ¢+ 1} {|rF‘ﬂZQ|—(r—1)F‘ﬂZQ| ifr>1.
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4.2.3 Remark. If we consider R? as an abstract affine plane only (with the
affine lattice Z? C R?), then the number ¢, above depends on the polygon
rF~ and cannot be determined from F'~ and r alone unless one fixes an origin.

4.2.4 Definition. We call the number ¢, - in the theorem above the content
of the diluted polygon rF~ with boundary conditions.

Proof of theorem 4.2.2. We start by showing that the sum } ¢ cs(frs—¢g) is
a constant function. Since the epsilons are already constant, it is enough to show
that Y g pcslys is constant, i.e., assume g = 0 for all edges S. Furthermore,
for any S, the difference ¢g — ¢,g is a constant (since the segments S and S
are parallel), so we may assume that » = 1. In the case when F is a 1-triangle,
we have sides S, S2,53 and a simple exercise shows that ¢g, + {5, + s, = 1,
hence, )¢ csls = 1. If F' is any integral polygon, take an integral triangulation
of F, that is, write F' = U F), where F}, are l-triangles, and dim(F, N Fp) <1
for k # h. We then get > g _ypcsls = >, ZScaFk csls which is a constant
by the above result. Here, we have equality because in the second sum, if
S = Fj N Fy, then g is counted twice, with opposite sign and if S C JF is a
primitive boundary segment, then /g is counted once.

We define c¢,p_ as the value of this constant function. We will prove the
theorem in the cases of a t-triangle or a t-trapezoid. One proves the theorem in
the cases of a big triangle or a t, s-trapezoid using similar methods.

We start with the case when F' is a ¢-triangle, and eg = 0 for all edges S.
Write OF = S; U Ss U S3, where the Sy are edges and S; has length ¢, thus Sy
and Ss have length 1. If » > 1, then (r — 1)F~ +p C rF~ and we have

lrF~NZ| —|(r—D)F~ NZ* = |rF~\ ((r = 1)F~ +p)NZ3.
Furthermore, we have
rE-\((r—=1)F +p)NZ*={perF NZ*|ls,(p)=0}. (4.1)

Note that in the case when r < 1, the set 7F~ N Z? is also given by the right
hand side above. Therefore, to prove the lemma, we must prove

max{0, ¢,p- + 1} = [{p € rF~ NZ* | {,5,(p) = 0}]. (4.2)

Since the endpoints of the segment S; are both regular vertices, the support
functions £,g,, s, restrict to primitive functions 4,.s,|r,,%rss|n, @ L1 — R,
where L, = {p € R? Mrsl (p) = O}. Therefore, if the right hand side of eq. 4.2
is nonempty, then it is given as {po,...,p.} where ¢,s,(pr) = k and £,.s, (pr) =
¢ — k. The result therefore follows by evaluating the sum ZSC@F cslrs at
the point pg. If the set is empty, then there is a unique point py € L; with
l.s,(po) = 0, and we must have ¢,.5,(pg) < 0, hence the result.

Now, assuming that €5, = 0 and €5, = 1 or €5, = 1, then the right hand
side of eq. 4.1 is given as {peg,, ..., Pe—cg, } and the result is verified in the same
way. If eg, =1, then, instead of eq. 4.1, we have

rF-\(r=1)F +p)NZ*={perF NZ*|tL(p) =1}. (4.3)

If this set is not empty, then it is given as {pcg,,...,Pc—cg, } Where £y, (pr) = k
and 67’53 (pk) = ¢ — k, hence (t(g""sl - 1) + (&‘52 - 552) + (&"53 - 553))(]7532) =

37



CEU eTD Collection

t =
r=18/5

grsl =0

Figure 4: Counting points in 7F~ \ ((r —1)F~ + p) when F is a trapezoid.

lrsy(Po) — €55 = ¢ — €5, — €85 = [{Pes,» -+ -+ Pe—es, }| — 1. The result follows in
a similar way as above if eq. 4.3 is empty.

The lemma is proved using a similar method if F' is a t-trapezoid. Assuming
this, write OF = 51 U So U S3 U Sy, where the edge S; has length ¢, and S; and
Sk+1 intersect in a vertex. If r > 1, then

rF~NZ| —|(r—D)F NZ* =|rF~\ ((r = 1)F~ +p)NZ3.
where p is the intersection point of S3 and S;. We get

rE=\((r—=1)F +p)nZ®={perF NZ’ Vrsl(p) =eg,0rlps,(p) =€s,}-

(4.4)

We see then that the right hand side above is given as {peg,,...,Pe—cg, } U
{Plgslv---7pé/_asg}, where p., :p’as1 and

bs,(pr) = sy, lrs,(Py) = €5us

ETSQ (pk) = ka €7“51 (p;c) = k?

besy(pk) = c—k, lsy(py,) = ¢ —k.
In particular, if we set ¢ = p.,, = p’asl, we get

Lsla) = es, L) = es,

lrs,(q) =  —esy, lrs,(q) = c—es,-

This gives

Z cs(ls —es)(q) = t(es, —es,) + (5, —€5,) + (! —es, —€5,) + (¢ — €5, —€5,)

SCOF
=c—¢g,—€g, +¢ —es5, —€s, + 1.

The right hand side above is the cardinality of the right hand side of eq. 4.4, if
this set is nonempty, otherwise it is nonpositive. This finishes the proof. O

5 Construction of sequences
In this section we will construct computation sequences for certain cycles on
the resolution graph of Newton nodegenerate surface singularities described in

subsection 3.2 and compare the intersection numbers on the right hand side of
eq. 2.5 with a lattice point count “under the diagram”. In section 6 we will use
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these results to identify the geometric genus topologically and in section 7 we
make the same identification of the normalized Seiberg—Witten invariant of the
canonical spin® structure.

In subsection 5.1 we give a technical result which essentially allows us to
work in a reduced lattice. These ideas are already present in [35, 20, 45| In
subsection 5.2 we give an algorithm, which explicitly constructs the compu-
tation sequences which we will consider. In subsection 5.3 we compute some
intersection numbers coming from these computation sequences.

5.1 Laufer sequences

In this section, L is the lattice associated with a resolution graph G of a normal
surfaces singularity as described in subsection 2.2. In applications of the results
presented, G will be the graph constructed by Oka’s algorithm in subsection 3.2.
We will describe a closure operator  on L and the associated generalized Laufer
sequences. Némethi considers a similar operator in [35] in a specific case, and
in [19] Laszlo provides a general theory. Many of the proofs in this subsection
can be found in these sources. See also [46].

5.1.1 Proposition. Let Z € L. There exists a unique cycle x(Z) satisfying the
following properties:

(i) mu(2(2)) = m,(Z) for alln € N.
(ii) (x(Z),E,) <0 for allve V\N.
(iii) x(Z) is minimal with respect to the above conditions.

Proof. Let G = G\ N be the subgraph of G generated by the vertex set V\ V.
Finding an element z(Z) satisfying the above conditions is clearly equivalent to
finding a minimal element Z in the lattice Lz associated with G satisfying

(ii") For all v € V\ N we have (Zg, Ey)g < — > cnny, Mn-

The existence of a minimal element satisfying (ii’), as well as its uniqueness, now
follows in a similar way as that of the minimal cycle, see definition 2.3.5 O

5.1.2 Remark. The above proposition and its proof hold if we replace N with
any subset of V.

5.1.3 Proposition. If Z < x(Z) then x(Z) can be calculated using a compu-
tation sequence (often referred as a generalized Laufer sequence ) as follows.
Start by setting Zg = Z. Then, assuming that Z; has been defined, if we have
(Zi, Ey) <0 for allv € V\N, then Z; = x(Z). Otherwise, there is a v(i) so
that (Zs, Ey(;)) > 0 and we define Z; 11 = Z; + E,;).

Proof. Tt is enough to prove the following: If Z < z(Z) and v € V \ N so
that (Z,E,) > 0, then Z + E, < x(Z). Indeed, assuming the contrary, we
have m,(Z) = my(x(Z)), hence (Z,E,) = (¢(Z),E,) — (x(Z) — Z,E,) <0, a
contradiction. O

5.1.4 Proposition. The operator x satisfies the following properties:

(i) If Z1,Z5 € L and m,(Z1) < m,(Z3) for alln € N then x(Z1) < x(Z3).
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(i1) x(x(Z)) = x(Z) for all Z € L.

1i) Let Z € L and Z' € Lg and assume that m,,(Z) = m,(Z') for alln ¢ N
Q
and (Z',E,) = 0 for allv € V\N. Then x(Z) > Z', with equality if
7' € L.

Proof. For (i), define Z’' € L by m,(Z') = m,(Z1) for n € N and m,(Z’) =
my(2(Z2)) for v € V\ N. Then Z’ satisfies the first two conditions in proposi-
tion 5.1.1 for Z = Z;. By definition, we get x(Z1) < Z' < z(Z,).

(ii) follows immediately from definition.

For (iii), let G = G \ N. Assume that Z; € L satisfies (i) and (ii) of
proposition 5.1.1. Write Z; = Z' + Z; where supp(Z;) NN = 0. Then, we
have (Z},E,) <0 for all v € V\ N. Applying lemma 2.2.12 to each connected
component of G we find Z; > 0. If Z’ € L, then Z, € L and by minimality,

Zl = 0. O

5.1.5 Lemma. Let Z € L and take n € N and n’ € N}. Let u € V,, be the
neighbour of n in the connected component of G\ n containing n'. If Z = x(Z),

then
ﬂn,n’mn(Z) + mn’(Z)—‘

’

(5.1)

m(2)= |
where we set myp(Z) =0 if n’ € N*\ N.

Proof. Let vq,...,v, be the vertices of the bamboo between n and n’ as in
fig. 1. We will assume that s > 2, since, in the cases s = 0 or s = 1, the
lemma is a simple consequence of the definition. Set also vg = n and vs11 =n'.
The condition Z = z(Z) then implies that the sequence (mr)iié, given by
m, = my, (Z) is the minimal family satisfying mo = m,(Z), msy1 = mu (2)
and my_1 — by, my +myy1 <0 for 1 <r <s. Let m{ = mg and

Onon

m, . =inf{m € Z|m > mgsi1, Bunmo+m=0(moday,,)}.

Since By, Mo + Mstr1 = 0 (mod oy, ), the equations

- bmi + mb = —my,
my._y — bim, + mp, = 0 l<r<s (5.2)
mg_y — bimj = *m{s+1
have integral solutions m/f,...,m,, see e.g. [61] or [2], III.5. Furthermore, we
have
m, = 5n,n’m6(z) + m/s+1(Z) _ ’Vﬁn,n’mn(z) + mn’(Z)—‘
! Qo n! Qp n!
By proposition 5.1.4(iii), mj, ..., m/ is the minimal sequence satisfying m,_; —

bymy.+m;., <0forall1 <r <s,and by proposition 5.1.4(i) we have m; < m).
Thus, we have proved the < part of eq. 5.1.

For the opposite inequality, set mg = mg, my, | = myy1 and take mfy,...,m/
as the rational solution of eq. 5.2, with m{ and m/_ ; on the right side replaced
with mg and m{, ;. Then we have m,_1 — b,m, +m,;1 for 0 <r < s+ 1, and
so m, > m. for all r by proposition 5.1.4(i). But we also have

" o__ 5n7n’m0(2) +msi1(2)
my = "

hence, the > part of eq. 5.1. O

)
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5.1.6 Lemma. Let G be a graph constructed by Oka’s algorithm as in subsec-
tion 3.2 from the Newton diagram T'(f). We have 2(0) = 0. Furthermore,

(i) If G is the graph of a minimal good resolution (i.e. T'(f) is a minimal
diagram) then x(Zx) = Zx.

(ii) If T(f) is convenient, then x(wt(f)) = wt(f).

(iii) Without the assumption of minimality or convenience, we have x(Zx —
E) = Zx — E 4 Ziegs where Ziegs is the support of all legs in G (see
definition 3.6.1).

Proof. The equality x(0) = 0 follows from proposition 5.1.4(iii). Similarly, (ii)
follows from the same lemma, once we show that if v € V\N, then (wt(f), E,) =
0. For such a v, there are n € N and n’ € N, so that v is on a bamboo
connecting n and n’ as in fig. 1. Set v9 = n and vsy1 = n’. We then get
Wiy, (f) = £y, (p) for 0 < r < s, as well as £,_,,(p) = 0 (this follows from
convenience). We therefore get (wt(f), By, ) = £u,_, (p) —by, Ly, (p) +Lo, ., (p) =0
for 1 <r < s, and (wt(f), Ey.) = Ly, (p) — by by, (p) = Lo, (P) — by b, (D) +
ly, 1 (p) = 0.

Next, we prove (iii). We start with showing Zx — E < z(Zx — E). By
negative definiteness, there exists a rational solution (m,),ey\nr to the linear
equations —b,m, + Zuevu\N My = = enny, Mn(Zx — E) for v eV \ N
Take Z € Lg with m,(Z) = m,(Zx — E) for n € N and m,(Z) = m, for
veV\N and set Z; = Zx — E — Z. Then Z; is supported on V \ N and we
have (Z1,E,) = (Zx — E,E,) > 0 for v € V\ N. By lemma 2.2.12, we have
Z1 <0, thus Zx — E < Z < 2(Zk — E) by proposition 5.1.4(iii). Now, ife € &,
we have (Zx — FE,E.) = 1, and so we can start a computation sequence as in
proposition 5.1.3 with e. Using the notation vy,...,vs as in definition 3.6.1,
we show that if we already have a computation sequence vy, vs_1,...,v,—1 for
some r > 1, we may take v, as the next element. But this follows from the
fact that (Zx - E—-E,, —...— E,,_,,FE,) = 1. Thus, we get a computation
sequence starting with Zx — F, ending with Zg — F 4 Zjegs, at which point we
have (Zx — E + Ziegs, E,y) < 0 for all v € V\N. Indeed, if v € V\ N is not on a
leg, then (Zx — E + Ziegs, By) = (Zx — E,E,) = 6, —2 = 0. If v = v, with the
notation above, then we get (Zx — E+ Ziegs, Ey) = (Zx, Ey) —1=—b,+1 <0
and if v = v, with r > 1, we get (Zx — E+ Ziegs, Bu) = (Zk, Ey) = —by, +2 < 0.
This proves (Zx — FE) = Zg — E + Zicgs.

Finally, we prove item (i). To calculate z(Zk), we can construct a computa-
tion sequence as in proposition 5.1.3 starting at Zx —E+Zlegs+zn€/\/ E,, since
Zx —E+Zegs = 2(Zx —E) < 2(Zk ) by proposition 5.1.4(i) and the above com-
putations, and therefore, Zr — E+ Ziogs + D e nr Bn < 2(Zk ). This sequence is
similar to the above. Take any n,n’ € N with n’ € N,, and a bamboo vy, ..., v,
connecting n,n’ as in fig. 1. We can then take v, ..., v, as the start of the com-
putation sequence. This is becasue if Z = Zx — E + Ziegs + > cpr Bn + Eu, +
..+ Ey,_,, then (Z, By, ) = my,_, (Zk) = by, (Mo, (ZK ) = 1) + 1m0, (ZK) =1 =
(Zk, Ey,)+ by, —1 =1 by the adjunction equalities. Now, the concatenation of
all the sequences along such bamboos gives a sequence which ends at Zx. Fur-
thermore, we have (Zk, E,) < 0 for all v € V\ N by the minimality assumption,
so this is where the sequence stops. O
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5.2 Algorithms

In this subsection we give three different constructions for a computation se-
quence, each having some good properties.

5.2.1 Definition. The ratio test is a choice of a node n € N given a cycle
Z € L. More precisely, we consider the following three minimising conditions:

I. Given Z € L, choose n to minimise the fraction
mn(2)
mn(ZK — E) '
II. Given Z € L, choose n to minimise the fraction
mn(2)
Wty (f)
III. Given Z € L, choose n to minimise the fraction

mp(Z) + wtp (z12223)

th(f)

If given a choice between more than one nodes minimizing the given fraction,
we choose one maximising the intersection number (Z, E,). We also define
7' = Zy, Z = wt(f) and 2 = 2(Zx — E).

5.2.2 Definition. Computation sequence * = LILIII is defined recursively
as follows. Start by setting Zy = 0. Given Z;, if Z; = Z*, then stop the
algorithm. Otherwise, choose ©(i) € N according to ratio test = and set
Ziy1 = x(Z; + Ey(;y). We obtain a computation sequence (Z;) for Z* by con-
necting Z; + Ey(;y and Z;11 using the generalized Laufer sequence from propo-
sition 5.1.3. This is possible since we have Z; = x(Z;) < 2(Z; + Eyu)) = Zit1
by proposition 5.1.4, and so Z; + E,;) < x(Z; + Ey@;)). Note also that by
lemma 5.1.6 and convention 5.2.3, we have z(Z*) = Z* in each case.

In case I, we will only consider the finite sequence going from 0 to Zg.
In case and III, similarly, we will only consider the finite sequence going from
0 to ©(Zk — F). In the case II we continue the sequence to infinity, as in

definition 2.8.1, yielding an infinite sequence (Z;)52,.

5.2.3 Convention. In case I, we will assume that the diagram I'(f) is mini-
mal, whereas in cases II and III, we will assume that the diagram is convenient.
This is motivated by the following facts. Ratio test I can be made for any
nonrational minimal graph, yielding a computation sequence to Zx in the nu-
merically Gorenstein case. By proposition 3.3.3, the minimal resolution graph is
obtained by Oka’s algorithm, assuming that I'(f) is a minimal diagram. There-
fore, although we use our knowledge of the diagram I'(f) in the proofs of our
statements, the statements themselves can be made entirely in terms of the link
M. In particular, the geometric genus can be computed using only the link.

In cases IT and III, we already assume the knowledge of wt(zz2x3) in order
to construct the computation sequence. Given a diagram I'(f) of an arbitrary
function f € Og¢s ¢ with Newton nondegenerate principal part, defining an iso-

lated singularity with rational homology sphere link, let f' = f +Zi’:1 r?, where
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d € Nis large. Then f and f’ define analytically equivalent germs. Furthermore,
let G’ be the graph obtained from Oka’s algorithm run on the diagram T'(f’).
For any e € &, set 7. = —(Zx — E+wt(f), Ee) + 1 if (Zx — E4+wt(f), E.) # 0,
but 7. = 0 otherwise. Assuming a good choice of d, the graph G’ is then ob-
tained from the graph G by blowing up each end ~. times. Therefore, assuming
that I'(f) is convenient imposes no restriction in generality if we already assume
the knowledge of wt(z1z223).

5.2.4 Remark. (i) The number k will be fixed throughout as the number of
steps in the sequence (Z;);. However, it depends on which case we are following.
In order not to complicate the notation, this is not indicated. In case I we have
k=3, cnmn(ZK), in case IIl we have k = 3\, my,(Zx — E) and in case II,
we have k= wtn(f).

(ii) Note that (Z;) forms a subsequence of (Z;) as in remark 2.8.4. From the
viewpoint of theorem 2.8.2, the only interesting part of the computation se-
quences constructed in definition 5.2.2 are the terms Z;.

5.3 Intersection numbers and lattice point count

In this subsection we assume that we have constructed a computation sequence

(Z;)F_, as in the previous subsection. The main result is theorem 5.3.2 which
connects numerical data obtained from the sequence (Z;)¥_, with a lattice point
count associated with the Newton diagram.

We remark that in this section, and in what follows, in cases II and III, we
assume that the Newton diagram I'(f) is convenient. In case I, however, we

assume that I'(f) is minimal.

5.3.1 Definition. In cases I, I, III, for any 7, define
a; = max{O, (7Zi7 Ev(i)) + 1}

Furthermore, set P; = (T (Z)\T4(Zis1)) NZ3. Set also a; = ay and P; = Py
if Z; = Z;;. Thus, in cases I, III we have a sequence (é)f;ol, whereas in case II

we consider the infinite sequence (@)$2,.

5.3.2 Theorem. Assume the notation introduced above and in subsection 3.4
as well as the sequence (Zi)fzo defined in definition 5.2.2. In case II, consider as
well the continuation of the sequence as in definition 2.8.1. Then the following
hold:

(i) In cases I, III we have Z?éo \T\(Zx — E) =11*_} P; and |P;| = a; for all
i=0,.. k—1.

(ii) In case II we have 73, = H;’igpi. In particular, Z%o \ T (wt(f)) =
1% P;. Furthermore, we have |P;| = a; if i < k and |P;| — |Pi_| = a; if
i>k.

In order to simplify the proof of theorem 5.3.2, we start with some lemmas.
The proof of the theorem is given in the end of the section.

5.3.3 Definition. To each node n € N in the graph we associate a cone C,,
and at each step in the algorithm we record the minimal fraction from the ratio
test.
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#® In case I we set

Moy (Z;)

O, =RsoF,(Zx — E), 7= —u 20
>0Fn(ZKk — E) o (Zx — B)

Furthermore, for any n € N, set ¢;,, = 1 if m,,(Z;) = 7im,,(Zx — E) + 1
but &; , = 0 otherwise.
% In case II we set
m Z;
Cn = RzoFn, 7= 0 (( ;
i) (f

Furthermore, for any n € N, set &;,, = 1 if m,,(Z;) = 7 wt,(f) + 1, but
€in = 0 otherwise.

# In case III we set

v(l)( ) + Wty )($1$2x3)
th(i)(f) .

Furthermore, for any n € N, we set ;,, = 1 if m,,(Z;) + wt,,(v12273) =
7wt (f) + 1, but &;,, = 0 otherwise.

Cn = (REOFH - (17 17 1)) ﬁIR> 1 Ty =

Fix a step i of the computation sequence in cases I, II, III. For n € ./Y@(i),
take u = ug(;),n € V() and define ;, = 1if g5, = 1 and B4y, ma)(Zs) +
mn(Z;) — 1 = 0 (mod ag;),, ), otherwise, set &;,, = 0. For n € J\/ﬂ*(i) \ N, we use
the following definition.

#® In case I, set €;, = 1if 7; = 1, but &;, = 0 otherwise.
% In case II, set ¢, , = 0 for all 3.

#® In case I1I, set ;,, = 1 if my()(Z;) + why(i)(z12223) — 1 = 0 (mod a,),
but €; , = 0 otherwise.

Although in case III, the sets C,, are not technically cones, we still refer to
them as such.

5.3.4 Remark. It can happen that for an n € Ny, and u = ug(;),, we have
n = u. In this case, a;(;),, = 1, so the condition By(; mmv(l)(Z YA+m,(Z;)—1=
0 (mod arg(;y,,,) is vacuous. Therefore, €iu = Ein 1S well defined.

5.3.5 Lemma. For any i >0 and n € N we have

[Fimn(Zx — E) + €in] in case I,
mn(Z;) = < [Fiwtn (f) + Ein | in case 11, (5.3)
[Ti Wt (f) — wtp (z12223) + €400 ]  in case I11.

Similarly, if (i) = n and u € V,,, then

[Fimy(Zx — E) + €i 4] in case I,
my(Z;) = < [Fs wto (f) + Eiul in case 11, (5.4)
[7i Wty (f) — wty (z12023) + €454 in case II1.
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Proof. We prove eq. 5.3 in case I, the other cases are similar. For a fixed ¢ and
n €N, set i =max{a € N|a <4, v(a) =n}. If n = v(4), then the statement is
clear, so we will assume that i # i’. Then m,,(Z;) = m,(Z;)+1. The ratio test
guarantees that the sequence (7;) is increasing. In particular, we have 7y < 7,
hence N
mn(ZK — E)
and so m,(Z;) — 1 = mu(Zy) < Fymn(Zx — E). The ratio test furthermore

gives 7;my,(Zx — E) < m,(Z;). Therefore, we have

=Ty ST

If we have equality in the second inequality above, then ¢; , = 1 and the result
holds. Otherwise, we have ¢, ,, = 0 and m,,(Z;) = [Fim,(Zx — E)], which also
proves the result.

Next, we prove eq. 5.4 in case I, the other cases follow similarly. Assume
first that n = ©() for some 4, and that u = u, , for some n’ € N,,. If &; , = 1,

then we get, by lemma 5.1.5 and the definition of ¢; ,, and the above result,

ﬂn,n’mn(zi) + mn’(Zi)—‘

QA n!

mal2) = |
— Bn,n’mn(Zz) + mn’(zv) -1

Qp n!
_ ,F'/Bn,n’mn(ZK - E) + mn'(ZK — E)

Qo n!

+1

+1

e Fimu(ZK — E) + 1.

The result follows by a similar string of equalities in the case €; ,» =1 # ¢; ,, as
in the case ¢;,,» = 0 = ;. If, on the other hand, n’ € N}i \ NV, then

mu(Zz) _ _ﬂn,no/[mn,(zi)—‘
_ _ﬁn,n’fimn(ZK - E)
B Q. n!
-, an,n’mu(ZK - E) + 1—‘
= ri
Qo n!

. [ﬂmu(ZK — Eﬂ T < ].7
) [Fime(Zx — E)]+1 7 =1.

Here, the first equalities follow as before. The case 7; = 1 is clear. The inequality

7; < 1is equivalent to m,(Z;) < m,(Zx — E). Assuming this, we must prove

| e

In order to prove the above equation, we will show that there is no integer k € Z
satisfying

Mo (Z1) o (Zx—E)+mn(Z;) > mp(Zx—E)an wk > mn(Z;) o wmu(Zx—E).
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Using lemma 3.2.8, this is equivalent to
mn(Zz)Bn,n’mn(ZK _E) Z mn(ZK_E)an,n’k > mn(Zz)(ﬂn,n’mn(ZK _E) - 1)

i.e.
Bn,n’mn(ZK - E) Z anm'k > 5n7n’mn<ZK - E) — Ty
But this is impossible by the assumption 0 < 7; < 1. O

5.3.6 Lemma. Let Z € L and assume that (Z, E,) > 0 for some v € V. Then
EY(Z)NRY =0 = F,(Z). If, furthermore, v € N, then F}*(Z) = 0.

Proof. Assuming that there is a point p € F}*(Z) N R, we arrive at the fol-
lowing contradiction

0< =bymu(2)+ Y mu(2) < =bolu(p) + Y Lulp) == Y Lu(p) <O

u€Vy uEV, ueVi\vV

where the equality is eq. 3.1. The last inequality follows since £,(p) > 0 for
all v € V* and p € R%,. Furthermore, we have F,(Z) C F}*(Z). The second
statement follows in the same way, since, by construction, we have V,, = V if
veN. O

5.3.7 Lemma. The cones C,,, for n € N, are given as follows:

(i) In case I

vn' e N

) o o) }

— R3
Cn {p € o (Zx —E) = mn(Zx — E)

where we replace my/ (Zx — E) with —1 if n’ € N*\ N.
(ii) In case II

v e N, @ o Glp) vn'e/\/;\/v;zn,(p)zo}.

o 3
Cn = {p eR Wt (f) — wtn(f)

(iii) In case IIT

, L (p) + Wt (m12203) L (p) + Wy (212273)
SN T S el

V' e NJ\N: Ly (p) > —1

C,=<(pe€ R3>71

Proof. The face F,, — (1,1,1) is given by the equation ¢, = m,(Zx — E) and
the inequalities £, > m,/ (Zx — E) for n’ € N,. (i) therefore follows, since C,
is the cone over F,, — (1,1,1).

For (ii), we have, similarly as above, that C,, is given by inequalities £,/ / wt,,/(f) >
ln) wtn(f) for n’ € N, and £,y > 0if n’ € Nf. If n’ € N;F\ N, then ¢, is one of
the coordinate functions. Since F,, C Rio, the above inequalities are equivalent
with £y, / Wt (f) > £,/ wt,(f) for n’ € N, and ¢, > 0 for ¢ = 1,2, 3.

(iii) follows in a similar way as (ii). O

5.3.8 Lemma. Letn € N'. We have F2°(wt(f)) = F,, and F**(Zx—E) = F,,—
(1,1,1). Furthermore, Fi®(Zx — E) consists of those points p € H, (Zx — E)
satisfying Ly (p) > mp (Zx — E) forn' € N, and £, (p) > —1 forn’ € N\ N.
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Proof. Start by observing that for p € H (wt(f)) and n’ € N} we have £, (p) >
wty (f) if and only if £, (p) > wt,(f), where v = /. Indeed, the halfplane
defined by either inequality has boundary the affine hull of the segment F,, N
F,, and contains F,. By definition, the face F), is defined by the equation
l,(p) = wt,(f) and inequalities £,/ (p) > wt, (p) for n’ € N*. The equality
F,, = F"(wt(f)) follows. This result, combined with proposition 3.4.6, provides
Fi*(Zyx — E)=F, — (1,1,1).

For the last statement, we observe as above that for p € H (Zx — E),
n' € N, and u = uy, s € V,, the inequality £,/ (p) > m,/ (Zx — E) is equivalent
with £,(p) > my(Zx — E). Furthermore if n’ € N \ N, and u = uy, 5/, using

CYn,n’gu = ﬁn,n’gn + gn'

5.5
an,n’mu(ZK - E) = 5n,n’mn(ZK — E) -1 ( )

we find that £,(p) > m,(Zx — E) if and only if £,/ (p) > —1, since we are
assuming that ¢, (p) = m,(Zx — E). Here, the first equality in eq. 5.5 follows
from remark 3.2.2(ii) and the second one is lemma 3.2.8. O

5.3.9 Definition. For any i, let F" = Cy; N H, o )(Z ). For any u € Vy(;y, let
Si,u be the minimal set of £, on F", and set F;"" = F™ \ Ug, ,=1Su,i-

5.3.10 Lemma. In cases I, III, for i = 0,...,k — 1 and in case II, for i > 0,
we have - ~ -
Py = Fy)(Zi) NZP = F})(Z)NZ° = F*~ N Z2.

Proof. We start by proving the inclusions
P, C Fyy(Z:)NZP C Fy)(Z)NZP C FPP~ N 7P (5.6)
For the first inclusion in eq. 5.6, note that
—{p€Z3ﬂF ’mvz)2)<év( ()<m1—)(i)(Zi)—|—l}.

Since the function £;(;) takes integral values on integral points, we may replace
the two inequalities with £5(;)(p) = ms(;)(Z:), yielding, in fact, P; = Fy(;)(Z;) N
VAS

The second inclusion in eq. 5.6 follows from definition.

For the third inclusion, we prove case I, cases II and III follow in a similar

way. Take p € FSE)(Z ) NZ3. Clearly, we have l5(;y(p) = mg(;)(p), thus p €
Hﬂ( )(Z ). We start with proving p € Cy;), i.e. that p satisfies the inequalities

in lemma 5.3.7(i). Take n € Ny(;) and set u = ug(;),,,- Then

gn(p) = Q5(4),n ( ) 51) (i), 1)( )( ) -
> (i) Ml Zi) — Bagiy M) (Zi)
> 7 (o) nmu(Zx — E) = By(iynma()(Zx — E))
= Fimn(ZK — E)
By lemma 5.3.7, this gives p € Cy(;)- If u = uy(;),, and g;, = 1, then the second

inequality above would be strict by lemma 5.3.5. By lemma 5.3.7, this implies
p ¢ C,. By definition, we get p € F"".
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By lemma 5.3.12, the sets Fga; N Z3 are pairwise disjoint. Therefore, to
prove equality in eq. 5.6, it is now enough to prove U P D U’C lFE(“Z)_ VA

in cases I and III, and U° P, D U of5 N Z3 in case II. But this is clear,

smce by construction, we have U/~ P; = 73,\I'(Z;) for any j, hence UMlp =
23, \T(Zx — E) in cases I and III, and U2, P; = Z3, in case IL. O

5.3.11 Lemma. In cases I and III, if 7; = 1 then (Zi,E,;(i)) > 0. Similarly, in
cases I and II, if 7; = 0, then (Z;, Ey;)) > 0 unless i = 0.

Proof. We start by proving the first statement.

For each n € N, there is a unique ¢ so that v(i) = n and 7; = 1. Since
the sequence 7y, ..., Tx_1 is, by construction, increasing, we see that Zk,w| =
x(Zk — E), that the sequence v(k — |NV]),v(k — |N] +1),...,9(k — 1) contains
each element in A exactly once and that 7; < 1 for ¢ < k — |A]. Recall that by
lemma 5.1.6, we have (Zx — E) = Zx — E + Zcgs.

If u = u. € Vy(;) for some k — [N]| < j < k — 1, then we have m,(Z;/) =
my(Zk) for k — [N < j° < k — 1. This clearly holds for j = k — |[N] by
lemma 5.1.6, as well as for j = k — 1. By monotonicity, proposition 5.1.4(i),
the statement holds for all £ — |N| < j < k — 1. By definition of ¢; ,, we also
see € 5(; = 1 if and only if j* < j. Thus, if k — [N| < 4,5/ < k—1 and
9(j") € Ny(jy, then, by lemmas 5.1.5 and 3.2.8,

5n7n’mn(ZK - E) + mn’(ZK - E) + Ejvﬁ(j,)

Qp n!

mu(Z;) = { w = mu(Zx—E)+ej0()

where n = 9(j) and n’ = 9(j') and u = u,, ,,s. Here we use lemma 3.2.8, which

implies that By nmn(Zx — E) + myp (Zx — E) = 0(mod ay, s ). Therefore, if
— N <5 <5’ we get

(Zj, En(jr)) = (Zx — B, Eg(jry) +1Eugin| + [{v(G") [ 7" <5} NNy

-1 " . (5-7)
=2-=[{o(G") 15" = 3} NNyl

because (Zx — E, E,) =2 —§, and 6,, = |E,| + |N,,| for all n € N.

For j = k—|N|,...,k—1, let H; be the graph with vertex set 0(j), ..., v(k—1)
and an edge between n,n’ if and only if n’ € N,,. We will prove by induction
that the graphs H; are all trees, i.e. connected, and that if j < k — 1, then v(j)
is a leaf in Hj, that is, it has exactly one neighbour in Hj.

We know already that Hy_|y| is a tree. Furthermore, removing a leaf from a
tree yields another tree. Therefore, it is enough to prove that if, for some j, the
graph H; is a tree, then o(j) is a leaf. The ratio test says that we must indeed
choose ¥(j) from the graph H;, maximising the intersection number (Z;, Ey;))-
For simplicity, identify the graph H; with its set of vertices. Then eq. 5.7 says
that for any n € H;, we have (Z;, E,,) = 2 — |H; N N,|. This number is clearly
maximized when n is a leaf of H;. Furthermore, we have (Zj,E@(i)) =1 for
Jj<k—1and (Zx_1, E5—1)) = 2, proving the first statement of the lemma.

We sketch the proof of the second statement. The sequence v(0), ..., v(|N|—
1) contains each element of A exactly once. Therefore, we have mv(l)( ;) =20
for i < |N]. Similarly as in the case above, one shows that if 0 < 4 < [N, then
©(¢) is chosen in such a way that there is an i’ < 7 so that v( "} € N, and hence,
my(Z;) > 0 for u = Ug(i),5(i), Which yields (Z;, Eyy) > 0. O
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5.3.12 Lemma. In cases I, III, let 0 < ' < i < k—1, in case II, let 0 < i’ < i.
Then FF*~ NES"™ NZ3 = 0.

Proof. We will assuma that we have a point p € F/™~ N F;"~ NZ3, to arrive at
a contradiction. Set n = v(i) and n’ = v(i’).

We start with cases I, III. In these cases we will show that n’ € N, and that
€;u = 1 where u = u, ,,/, hence, p ¢ F"", a contradiction. Since p € C,, NCyy,
we have, by lemma 5.3.7

mn(ZZ) _ En(p> _ Kn/(p) mn’(Zi’) _

= = = =Ty

Ty =
mn(ZK 7E) mn(ZKfE) mn/(ZKfE) mn/(ZKfE)

in case I. In case III, we have, similarly,

_— mn(Z;) + Wt (71 2223) _ An(p) + Wty (z12023)

Wi (f) wtn (f)
_ (p) + Wty (z12273) _ My (Zir) + Why (217923) _
Wi (f) Wi (f) "

The ratio test guarantees that the sequence 7, 71, . . . is increasing. In particular,
there is no i’ with i’ < i < i and v(i"") = n’/. Therefore, we find m, (Z;) =
mu(Zir) + 1. By definition, we find ¢; ,,» = 1.

If 7; # 0, then define p = 7; 'pin case Land p = 7, ' (p—(1,1,1))+(1,1,1) in
case III. In each case, we have p € (I'(f)—(1,1,1))NR>g, as well as p € C,,NCyr.
In particular, p is not in the boundary of the shifted diagram oT'(f) — (1,1,1).

Therefore, the intersection F, N F,,, must be one dimensional. Thus, n’ €

N,.. Furthermore, we have m,(Z;) + mn/(Z;) — 1 = mu(Z;) + mp (Zy) =
ln(p) + L (p) = 0(mod v, /), hence ¢, , = 1, where u = u, /. But since
p € F,NF, —(1,1,1), the point p is in the minimal set of ¢,, on F", thus
p ¢ F"7. This concludes the proof in cases I, IIT if 7; # 0.

By construction, we can not have 7; = 0 in case III, and as we saw in the
proof of lemma 5.3.11, since 7 > 0, the node n has a neighbour n” for which
mun(Z;) = 1, hence ¢, ; = 1 for u = Uy, n, finishing the proof as above.

Next, we prove the lemma in case II. For brevity, we cite some of the methods
used above. For instance, we find 7; = 7;» in a similar way. The case 7; = 0 can
also be treated in the same way as in case I, so we will assume 7; > 0. Set p =
fi_lp. Then p € T'(f). Unless p is an integral point, we see in the same way above
that n’ € NV, and that ¢;, = 1 for u = uy, ., finishing the proof. Therefore,
assume, that p is integral. Then p lies on one of the coordinate hyperplanes and
it lies on the boundary OT'(f). It follows that we have nq,...,n; € N so that
F,, for 1 < s < j are precisely the faces of T'(f) containing p and that ny € N,

if and only if [s —s’| = 1. There are also have numbers i1,...,i; € N so that for
each s, we have v(is) = n, and mg(;_)(Z;,) = l5,)(p)- Let o be a permutation
on 1,...,j which orders the numbers iy,...,7;, that is, iy1) < ... < ig(j)-

Just like in the previous case, we see, by lemma 5.3.7, that 7;_ is constant for
1 <s<j,andsofor 1 <s,s' < j we have my, (Zyi_ ) = ln.(p) + €i ., and
€i,m, = 1if and only if s < s’. Furthermore, if v = uy,_ ,, ,, for some s, and
€i,m.41 = 1, then we get €;_,, = 1 in the same way as before.

By the assumption p € C,, N C,, there are s, s’ so that n = ny, = (i) and
n' = ng = 9(is). In particular, iy > iy > i,(1). Thus, the lemma is proved,
once we show that for any s with i, () > i,(1), we have, either i, (s +1) < iy
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or ig(s — 1) < i), because, if e.g. i,(s + 1) < i,(s) then &, = 1 where
U = Up,n,.,,and sop¢ F" . We will prove this using the following satement.
If o(s”) > o(s), then
7 <0 f G, Mgrr :0 d’in// :O
(Ziy, Bu,)d = 0 L Shemer = ATy (5.8)
' ° >0 if 1<s”"<jande; pn, ,= lorei m,,,, =1

Here, we exlude the condition €igmgny, = 0 if s’ = j as well as the condition
€i.n.n_, = 01if s =1, since they have no meaning.

We finish proving the lemma assuming eq. 5.8. Assume that 1 < s < j
and o(s) > o(1). The node ©(is) is chosen according to the ratio test. If there
is an s” so that 1 < s” < j and €;, ,,, = 0, then this s can be chosen so
that either &;,,, ,,, =1 ore; n, , =1, and therefore (ZZ-S,EnS,,) > 0 by the
second part of eq. 5.8. By the maximality condition in the ratio test, we find

(Zi,, Es@i,y) > 0, and therefore, by the first part of eq. 5.8, either Eigngry = 1
or i, n,_, = 1, that is, either i5(s + 1) <iy(s) O ix(s — 1) < ig(s).
If, however, there is no such s”, then ¢;_,, , = 1 for 1 < s < j, and so

O(is) = my or 9(is) = n;. In the fist case, we have ¢;, ,, = 1 and in the second
case, we have €;_,, , = 1, which, in either case, finishes the proof.

We remark that if & =)\ wt,(f), then 9(i + k) = 0(i) and €;», = €i1p,0
for any v where ¢; ,, is defined. It therefore suffices to prove the above statement
for i < k, which is equivalent to 7; < 0.

We will now prove eq. 5.8. For the first part, take 1 < s” < j with o(s"”) >
o(s), hence €, , , = 0. Assume further the given condition, namely that, if
s” > 1, then g, , =0andif s” < j, then €ivngn,, = 0. Since m,_, (Z;.) =
n_,(p), it is enough, by eq. 3.1, to show that my(Z;) < £y(p) for all u € Voo
Note that since ny» € N we have V) =V, ,, see remark 3.2.6(1). If u =
Un s gy s then ’

/anll,nsllilmns// (Zl) + mns”il (Z’L)
ans”’ns”il

_ an//,ns//ilgns// (p) +£’ns//i1(p) (59)

mu(le) =

«
Mgt Mgrr 41

by lemma 5.1.5. If w € V,,, is any other neighbour, then there is an n” € N*
so that u = uy,_, nv. If n”/ € N*\ N, then n” = n} for some e € &, ,,, and

r~ ﬂemn‘// (Z’L;) ﬂegn,u (p) /Begn‘// (p) +€n” (p)
mal2y) = | P Zed | [ Belan )| o Pt — ().
Qe Qe Qe
(5.10)
If n € N and n” is not one of the nodes n4, ..., n;, then p ¢ C,», in particular,

p € Cy_, \ Cpr, and so by lemma 5.3.7

En” (p) > éns// (p) _
Wtﬂ”(f) thsu (f)

which, by lemma 5.3.5, gives £, (p) > 7 Wty (f) + €5, nr = My (Z;,) because

50



CEU eTD Collection

if €5, n # 0, then 7;, wt,»(f) € Z. This yields

ﬁns//,n”mns// (Zz) + mn”(Zi)—‘

"
a’ns// ,M

malZi) = |

< anx/,n”gns// (p) + En” (p) (5]_]_)

"
Oéns// ,T

This finishes the first part of eq. 5.8.

We prove next the second part of eq. 5.8. So, assume that 1 < s” < j and
that €;_n_,., +€i_n,_, >0. Asineq. 5.9 we find my(Z:,) = Lu(p) +Ei nngrs
if w = un_ n,,,- The result therefore follows from eq. 3.1, once we prove
my(Z;,) = Lu(p) for v e V,,, \ {ngr+1}.

We start with the case u = u. with e € £, ,,. In this case, we will show
that we have, in fact, equality in eq. 5.10 (where n” = n%). This follows once
we prove that £, (p) < ac. Since the face F, , has at most four edges, the
edge F, , N F,: is adjacent to at least one of the edges F,, N Fns”iu let
us assume that it is adjacent to F}, , N Fns//+1v and define p; as the point of
intersection of the two edges. Define also p; = 7;p. Then p; is a vertex of the
face F,, ,. From corollary 4.1.7, we see that this is in fact a regular vertex,
and from proposition 3.2.10 we have £, (p — p1) = @, nx. Furthermore, since,
in case II, we assume that the diagram is convenient, the function £, is one
of the coordinates, and p; is on the corresponding coordinate hyperplane, thus
lnx(p1) = 0. We get £,«(p) = Ln:(p — p1) = Tice and 7; < 1 since we are
assuming case 1I.

For the case when n” € N, _,, equality in eq. 5.11 is proved in a similar
way. This finishes the proof of the second part of eq. 5.8, and so, the lemma is

proved. O]

Proof of theorem 5.3.2. Take any i, with 0 <¢ < k—1in cases I, III, and ¢ > 0
in case II. Each edge S of the polygon Ff™ is the minimal set of some ¢, with
u € Vy(;). In this case, define e5 = ¢;,. We have —by(;) L) + Zuevgm £, = 0.
Thus, for any p € H{):(i)(Zi), we have —by(iyma)(Z;) = zuev,—,(i) £, (p). This
gives

(= Zis Esiy) = —boymay(Zi)— > mu(Zi) = Y lu(p)—mu(Z). (5.12)
MGV@(U ’U.Gvﬂ(i)
If u € Vy(;), then there is an n € ./\/g(i) so that u = ug(;),,. Let S C Ff™ be the
minimal set of £,,. We then have

[Fimy(Zx — E)] in case I
) [rwtu(f)] in case I'T _ ” _
|—€u|S.| == 'Fimu(ZK _ E) + Wtu($1$2$3) . = mu(Zz) —E&iu
in case 1]
Wt (f)

by lemma 5.3.5. Furthermore, €u|Hf(,.>(Zi) is a primitive affine function, whose
minimal set on Ff™ is 7;5. Using notation from section 4, it follows, that

ls = Ly —my(Z;) +€s, and so, by eq. 5.12, we have (—Z;, Ey(;)) = cpen—. The
theorem therefore follows from theorem 4.2.2. O
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6 Calculating the geometric genus and the spec-
trum
In this section we assume that (X,0) C (C3,0) is an isolated singularity with

rational homology sphere link, given by a function f € Og¢s o with Newton
nondegenerate principal part. Notation from previous sections is retained.

6.1 A direct identification of p, and Sp_,(f,0)

In this subsection we give a simple formula for both the geometric genus p, and
part of the spectrum, Sp.,(f,0), in terms of computation sequences I and IIL
Eq. 6.1 has already been proved in [46] using the same method.

6.1.1 Theorem. Let the computation sequence (Z;)%_, be defined as in defi-
nition 5.2.2, cases I, III. Recall the numbers 7; € [0,1] from definition 5.3.5.
Then, the geometric genus of (X,0) is given by the formula

= ZmaX{O, (=Zi, Egy) + 1} (6.1)

Furthermore, in case III we have
Sp<o(f.0) Zmax{o (=Zi, Eoo) + 1}[1] € Z[Q). (6.2)

6.1.2 Lemma (Ebeling and Gusin-Zade [8]). Let g € Ocs ¢ andn € N'. Writing
9= 2 pene o, set gn = D34 (p)—wi,(g) 0p27- Then wtn(g) < diva(g) if and
only if gy, is divisible by f, over the ring Ocs o[xy ', x5 ", 3] O

Proof of theorem 6.1.1. We start by proving eq. 6.1. By proposition 2.5.8, we
have p, = hz, . Therefore, eq. 6.1 follows from theorem 2.8.2, once we prove
HY(X,04(~Z _
dim«; ( x(=%) > max{0, (Z;, Fyq;y) + 1} (6.3)
HO(X,0%(~Zit1))

for all i = 0,...,k — 1. We start by noticing that for any p € P; we have 2P €
HO(X,04(—Z;)) (we identify a function on (C?, 0) with its restriction to (X, 0),
as well as its pullback via 7 to X). By theorem 5.3.2(i), the right hand side of
eq. 6.3 is the cardinality of P;, and so the inequality is proved once we show that
the family (zP),p, is linearly independent modulo H(X, O (—Zi41)). So,
e p, bpa? and assume that g € HO(X O0x(-Z

Since g = gp(;), lemma 6.1.2 says that there is an h € (9@3,0[:171 , Xy ,sc3 1 so
that ¢ = hf,. In the case when r; = 1 we have P; = (). Otherwise, we have
r; < 1 and the support of g is contained in a translate of r; Fy(;). A simple ex-
ercise shows, however, that the convex hull of the support of A f,, must contain
a translate of Fy(;), unless h = 0. We have therefore shown that g = 0, proving
the independence of (27),cp, - B

For eq. 6.2, we note that if p € F;, then p + (1,1,1) € R>oF;(;) and so
7i = {¢(p) (see definition 3.5.1 for £¢). The family of sets P; + (1, 1,1) provides

take a C-linear combination g = )
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a partition of the set Z2, \ I'4(f). Saito’s result proposition 2.11.9 therefore
gives

k—1
Sp<o(f,0) Z S ler(p)] =Y max{0, (—Zi, By + 1}7).
=0

=0 pePp;

O

6.2 The Poincaré series of the Newton filtration and the
spectrum

In this subsection, we give a formula for the Poincaré series P{(t) in terms of
computation sequence II. In particular, we recover Sp.,(f,0) again.

6.2.1 Theorem. Let (Z;)2, be the computation sequence defined in defini-
tion 5.2.2, case II and define

— ZmaX{O, (=Z;, Ey(iy) + 117 (6.4)

Then P¢(t) = PH(t). In particular, we have PY(t) € Clt]) and Sp(f,0)<o =
pPolEt).

Proof. For any i and p € _13i, we have lf(p) = 7, and 7 = 7 — 1 if ¢ >
k. Moreover, the family (F;) is a partition of Z?éo- By theorem 5.3.2(ii) and
lemma 3.5.3 we get

Pl A=) [Pt =(1—1t) > '@ =Pd().
=0

3
PEZLS,,

The other statements now follow from theorem 3.5.4. O

7 Calculating the Seiberg—Witten invariant

In this section we compare the numerical data obtained in section 5 with co-
efficients of the counting function @Qo(¢) from subsection 2.4. Using proposi-
tion 2.6.9 we recover the normalized Seiberg—Witten invariant associated with
the canonical spin® structure on the link from computation sequence I from
definition 5.2.2. The strategy we will follow is similar to that of the geometric
genus. We do not know whether the “main identity” Zy = P holds (see [37]). We
will, however, see that computation sequence I defined in section 5 does in fact
compute the normalized Seiberg-Witten invariant sw9,(ccan) — (Z% + [V|)/8,
using the counting function @Qq(t) in the same way the geometric genus was
obtained using the Hilbert function H(t).

In this section we assume that M, a rational homology sphere, is the link
of an isolated singularity (X,0) C (C3,0) given by a function f € O¢s with
Newton nondegenerate principal part. We will assume that G is the minimal
graph representing the link. Equivalently, it is the graph obtained by Oka’s
algorithm in subsection 3.2, under the assumption that the diagram I'(f) is
minimal. Furthermore, we have the series Z, Q) defined in subsection 2.4. We
assume that (Z;) is computation sequence I from definition 5.2.2.
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7.0.2 Theorem. Fori=0,...,k—1 we have
47, — 4z, = max{0, (—Z;, E5y) + 1} (7.1)

In particular, we have

SW?V[ (Ocan) —

2 k—1
ZK%M =" max{0, (~Zi, Eaiy) + 1}. (7.2)
1=0

7.0.3 Corollary (SWIC for Newton nondegenerate hypersurfaces). The Seiberg
Witten invariant conjecture holds for Newton nondegenerate hypersurface sin-
gularities (see subsection 2.7). O

Proof of theorem 7.0.2. If the graph G contains a single node, that is, |[N] =1,
then eq. 7.1 follows from lemma 7.2.1. If 4(4) is a central node (and not the
only node), then eq. 7.1 follows from lemma 7.6.6. If G contains exactly one
or two nondegenerate arms and ¥(4) is not central, then eq. 7.1 follows from
lemma 7.7.1. If G contains three nondegenerate arms and ©(¢) is not central,
then eq. 7.1 follows from lemma 7.8.2. By proposition 3.6.4, there are no other
cases to consider.

Summing the left hand side of eq. 7.1 gives a telescopic series yielding ¢z, —
¢o- We have ¢o = 0 because Zy(t) is supported on the Lipman cone Syop C
Z>o(V), and qz, = swh;(0can) — (Z5 + |V])/8 by proposition 2.6.9. O

7.1 Coefficients of the reduced zeta function

In this subsection we will describe a reduction process which will simplify the
proof, as well as computing the coefficients of the reduced zeta function. The
reduction is a special case of a general reduction theory established by Lészl6
[19].

7.1.1 Definition. Define LN = Z (E,[n € N') € L and let 7™ : L — LN be
the canonical projection. Set V,, = Z (Ef|lve NUE) and Vz = V, N L and
VY =N (Vy). For I € L we also write 7V (1) = I| .

7.1.2 Lemma. We have

Vé\f — {l e IN ‘ YneN,n eN, : B min(l) + m (1) € Z} . (7.3)

Qp n!

Furthermore, assuming ' € Vz with l'|;r =1 and n € N, then, for n' € N,,, we
have

mu(l/) _ ﬁn,n’mn(l) + My (l) : (74)

Qo n!

where u = Uy, v, and for n’ € N \ N

(1) = Prmnl) = (O Be) (7.5)

Qo n!

A * " —
where e € €, so that n’ = n} and, again, u = Uy .
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Proof. We start, by noting that egs. (7.4) and (7.5) follow from remark 3.2.2(ii).
In fact, this proves the inclusion C in eq. 7.3. By further application of re-
mark 3.2.2(ii), given an [ in the right hand side of eq. 7.3, n € A and n’ €
N, we can construct a sequence my, (I'), ..., m, (I') between m,,(I') := my (1)
and my (I') := my/ (1), where vy,...,vs are as in fig. 1. In fact, we have
My, (') = (Buwmn(l) + my (1)) /an,n and the other multiplicities are deter-
mined by m,,__, (') — by, my (I') + m,_ ., (I') = 0. For n’ € NJ\ N, we can
choose m,(I') randomly for u = w,,,s and construct a similar sequence. This
yields an element I’ € L satistying (', E,) = 0 for any v € V with 6, = 2, that
is, I’ € Vz, proving the inclusion D in eq. 7.3, hence equality. O

7.1.3 Definition. For any e € £, set D, = a.E; — E}, .

7.1.4 Lemma. Letn € N and e € £,. Then D, is an effective integral which
is supported on the leg containing e. In fact, the family (D.).ce is a Z-basis for
ker(Vy — V¥).

Proof. First, if v € V is a vertex outside the leg containing e, then IT;}) = aelej
(recall the notation for the intersection matrix and its inverse, definition 2.2.6).
This follows from [51], Theorem 12.2, see also [9], Lemma 20.2. Thus, m,(D.) =
0 for v € V not on the leg, i.e. D, is supported on the leg. Let u. be the
neighbour of n on this leg. We find m,,_(D.) = (E,, D.) = 1. Furthermore, if
the leg consists of vertices vy, ..., v, as in fig. 1, then the equations m,, _,(D.)—
by, M, (De) + M, (De) = 0 recursively show that m,, € Z for all . Thus, we
have D, € L. Since (D, E,) < 0 for all v on the leg, we find, by lemma 2.2.12,
that m,(D.) > 0 for any such v, that is, D, is effective and its support is the
leg.

For the last statement, set K = ker(Vy; — V2). Note first that by 7.1.2 we
have rk K = |£|. It is then enough to find a dual basis, that is, A\, € Hom(K,Z)
satisfying Ae(Der) = der. By what we have just shown, this is satisfied by
Ae(l) = my, (). O

7.1.5 Definition. Recall the definition of the Lipman cone Sio, in defini-
tion 2.3.1. Set Sz = Siop N Vz and for I € V¥, define Sz (1) = Sz N (7V)~1(1).
Define also S3 = 7V (Sy).

7.1.6 Lemma. Let [ € V¥ and choose I € Vi so that I'|\r = 1. The element

b= -3 {HE)J D, (76)

(6]
ecf ¢

is independent of the choice of I'. Furthermore, the set Sz (1) consists of the
elements Y(1) + > . ce keDe where ke € N satisfy > e ke < (—1(1), Eyn) for
allneN.

Proof. Let 1)/ be the element on the right hand side of eq. 7.6. For any I” € Vz,
also satisfying 1”|ns = [ define ¢ similarly, using I”. By lemma 7.1.4, there
exist ke € Z for e € £, so that I” = o' + > ¢ keD.. By definition, we have

0 < (=%, Ee) < ae, and so k. = {%%)J, which gives ¢ = ¢,

For the second statement, we note first that by lemma 7.1.4, any element
I'" € Vg, restricting to [, is of the form ¥ (l) + > .c k.D. for some k., € Z.
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Also, we have I’ € Sz(I) if and only if (I, E,) < 0 for all v € EUN. For
e € & we have —a, < (¢¥(1),E.) <0 and (', E.) = (¢¥(1), E.) — ke, showing
(I, E.) < 0if and only if k. > 0. Using lemma 7.1.4 and the results found in its
proof, we find (I', E,,) = (¢(1), En) + > .ce ke- Thus, (I, E,) <0 if and only if
Dcee ke < (=9(1), En). O
7.1.7 Remark. Let [ € VY. By lemma 7.1.6, we have Sz(I) # 0 if and only if
(1) € Sz, which is equivalent to (¢(1), E,) <0 for all n € N.

7.1.8 Lemma. Letl € Vy; ande € &£. If u = u,, then
Bemn(l)—‘

Qe

malwl0) = |

Proof. This follows from eq. 7.5 and the fact that 0 < (—¢ (1), E.) < .. O

7.1.9 Lemma. Letl' € Sy and take Z € Syop, satisfying Z = x(Z) (see subsec-
tion 5.1). Then ' > Z if and only if U'|ny > Z|n-

Proof. The “only if” part of the statement is trivial. For the “if” part, take
"€ Sz(1). We find I’ > z(I’) by the definition of x. The result therefore follows
from the monotonicity of x, proposition 5.1.4(i). O

7.1.10 Definition. Define the reduced zeta function Z} (t) in |N| variables by
setting t, = 1 in Zo(t) if v ¢ N. Thus, we have Z3/(t) = DN 2Nt where
2N =S {2 |I' € Sz(1)}. This series is supported on S%'.

7.1.11. Take !’ € Vz and write I’ = ) _\-,¢ aoE;. Using eq. 2.1 and the linear
independence of the family (E),cy, we see that 2z = [], o nug 27,0, Where we

set
1 ifve&, 0<ay,

0y — 2 )
Ry = (—1)‘1”( ) lfUEN,OSCLU §5U—27
Gy
0 otherwise.
For any | € LV, we therefore have, using lemma, 7.1.6,

N 3 II zowes kepm

(ke)EN® neN
vn'eN: Zeeg , keg(_w(l)vEn’)

— — 5” -2
_ H Z (—1)P DB~ Tece, ke ((—w(l),En) Sy ke>'

neN (ke)ENgn
Yecen ke <(=9(1),En)
(7.7)

Define zlj\;
7.1.12 Lemma. Letl € V) andn e N.

(i) If 6, — |En] = 1, then

as the n'h factor in the product on the right hand side above, so that

56



CEU eTD Collection

(i) If 6, — |En| = 2, then

0 else.

N {1 if (—1(1), E,) = 0,

(1ii) If 6, —|En| = 3, then

1 if (_w(l)v En) =0,
A =1 =1 if (—(l),E,) =1

0 else.

)

() If 6, — |En| = 0, then zlj\; = max{0, (—¢(1), E,) + 1}.
Proof. From eq. 7.7, we find (setting k = > .o ke)

(_w(l)aEn)
_ _wflEnl +E—1 Op — 2
Z% — z (fl)( ¥(1),En) k(| | f > <(_1/}(l) En) _ k> = C(—y(1),E,)

k=0

where we set C(t) = > 7o cith = A(t) - B(t), where

At) = i ('m +,f B l)t’“ = (1—t)71%,

k=0
- bn — 2
B — _1\k n k _ _ £\on—2
0 =30 (" )=
k=0
hence C(t) = (1 — t)®» 2711, In each case, this proves the lemma. O

7.1.13 Lemma. We have
02,0, — 1z, = Y _{A 1€V 1> Ziln, moy(l) = maa(Z0)} -

Proof. By definition, gz, is the sum of 2y for I € Vz with I 7 Zi,1. Subtract-
ing qz,, we cancel out those summands for which [" Z;. Note that these all
appear in the formula for qz,., since Z;y1 > Z;. Thus, by lemma 7.1.9 and the

definition of le, we have gz, —qz, = {z{v | le Vé\[, 1> Zin, 1 2 Zi+1|/\/}.
Since Ziy1|x = Zi|x+Ey (i), the condition | 2 Z; 1 |x is equivalent to mg ;) (1) =
my(i)(Z;), assuming [ > Z;|pr. O

7.1.14 Definition. For each step 7 in the computation sequence, set

Si = {1 e VI |1 > Zi|n, moy(1) = may(Zi), 2V #0}.

7.1.15 Corollary. For each i, eq. 7.1 is equivalent to

> =B

leS;
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7.2 The one node case

In the case when the diagram T'(f) contains only a single face, the graph G is
starshaped, i.e. contains a single node ng. Our function f then has the form
f = fno + fT, where wt,,,(fT) > wty, (f). The deformation fi(x) = fn, +tfT
has constant topological type, so for computations involving the zeta function,
or any other topological invariant, we may assume that f = f,,, i.e. that f
is weighted homogeneous. In other words, the variety X = {f = 0} c C3
has a good C* action. The singularities of such varieties have been studied in
[59, 49, 41] (to name a few).

7.2.1 Lemma. Assume that N = {no}. For any i we have 9(i) = ng and there
is at most one element l; € S;. In that case, we have

A = max{0, (~ Z;, Eyi)) + 1} (7.8)
In particular, eq. 7.1 holds.

Proof. Tt is clear that ©(i) = ng for all ¢ and that m,,(l;) = i determines
a unique element l; € LN = VN = Z (for IV = V), see lemma 7.1.2).
By lemma 7.1.12(iv), we have Z{Y = max{0, (=¥ (l;), E5iy) + 1}. By lem-
mas 5.1.5 and 7.1.8 we have m,,(Z;) = mq(¢(1;)) for u € Vy(;) and, furthermore,
M) (Zi) = i = my(;) (¥(1;)). Therefore, (=(li), E5;)) = (= Zi; E()), proving
eq. 7.8. O]

7.3 Multiplicities along arms

In this subsection we use lemma 7.1.12 to determine multiplicities along arms
given “local data”, i.e. multiplicities on two nodes. Recall the definition of arms
in subsection 3.6.

7.3.1. Assume that the diagram T'(f) has a nondegenerate arm consisting of
faces F,,,..., F,, so that for s =2,...,5 — 1 we have N,,, = {ns_1,n,41} and
Nn, = {nj—1}. In this case, we either have N,, = {na}, or there is a node
ng € N so that N, = {ng,na2} or {ng}, depending on whether j > 1 or j = 1.
If there is such a node ng, then we set v = 0, otherwise, set v = 1. Note that if
v=1,then N = {nq,...,n,}.

We fix the following notation as well. Let o = aip, n,,, and Bs = B, noiss
for v < s < j. Also, let B, = B, n., so that 3,8, = 1 (mod c). This way, the
two equations Byms + mgi1 = 0 and my +Bsms+1 = 0 (mod «5) are equivalent.

We always assume that v < j. If v = j, then we necessarily have v = j =1
and N = {ny}. This case is covered in subsection 7.2. Note that lemma 7.3.8
does not make sense unless we make this assumption.

7.3.2 Lemma. Assume the notation given in 7.3.1. Let v < s < j and assume
that we have numbers mgs,mgi1 satisfying Bsms + msy1 = 0(mod ) Then
there exist unique numbers m,,,...,m; (with ms and msy1 unchanged), so that
for any r we have

Brmy + mpyq = 0 (mod o) (7.9)

and

Moot 4 Broame | gy B S5 Ve”ﬂ —0. (710

Oy — « [e%
r—1 r+1 eCEn, e
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7.3.3 Remark. Assume that v < r < j. If | € IV and m,_ () = m, for
s=r—1,r,r+1, then 7.10 is equivalent to Z%T # 0, which again is equivalent
to zV. = 1. This follow from lemma 7.1.12(ii), and the fact that the left hand

Liny ™

side of eq. 7.10 equals (¢(l), E,.) by lemmas 7.1.2 and 7.1.8.

Proof of lemma 7.3.2. Assume that v < r < j and that we have integers m,
and m,11 satisfying B,m, + m,;11 = 0 (mod a,.). Then eq. 7.10 defines an inte-
ger my,, , which satisfies eq. 7.10. It is clear from this definition that m,_; +
B,_1m, =0 (moda,_1), or equivalently, 8,_1m,_1 +m, = 0 (mod a,_1). This

way, we obtain m,,, ..., ms_1 recursively. A similar process produces the num-
bers mgia,...m;. O
7.3.4 Definition. We will refer to a sequence of numbers m,,...,m; € Z

satisfying eqgs. (7.9) and (7.10) as an arm sequence. When there are more than
one arms in the diagram, it will be clear from context which arm is being referred
to.

7.3.5 Remark. We have 6,,, — |&,,.| = [Ny |=2forv<r<j(forl<r<j
if there is no ng). Therefore, it follows form lemma 7.1.12 and lemma 7.1.8 that
if | € LN and 2V # 0 then the sequence given by m, = m,, (I) must be an arm
sequence.

7.3.6 Lemma. Let m,,...,m; be an arm sequence. There exist unique points
Dugly--+>Dj—1 € 72 so that for each v < s < j andr = s — 1,s,5 + 1 we have
gn,- (ps) = My.

Proof. Let s be given, v < s < j. For simplicity, set ¢, = ¢, for all . We note
first that the functionals ¢s_1,¢s,¢s11 are linearly independent. This follows
from the fact that the functions ¢, — wt,, (f) for r = s — 1, s + 1 restricted to
the hyperplane ¢; = wt,,_(f) support adjacent edges of the polygon F, . Thus,
ls_1,0s11 induce an isomorphism H=(wt(f)) — R2, so the three functions form
a dual basis of R3. The existence of ps € R? follows, but we must show that p,
has integral coordinates.

Define uy,u_,up € Vp, by vt = Un, n.,,, and let ug be some other neigh-
bour. Since the functional ¢,,, is primitive, the hyperplane H = H, (ms) con-
tains a two dimensional affine lattice H N Z3. The restrictions ¢, |u, lu,|n are
all primitive, and by corollary 4.1.7 the functions £, |z, £y, |z give affine coordi-
nates over Z of this lattice. It is therefore enough to show that these functionals
take integral values on p,. First, we find

Bsens + Ens 1 sMg + ms
Bome ~ Thert ) () = u

Qs A

Ly, (ps) = ( ez
by eq. 7.9, and a similar formula for ¢,,_(ps). Subtracting eq. 3.1 from eq. 7.10,
evaluated at ps, and dividing by |&,| one finds

luo (ps) = Vmw €Z, (7.11)
Qe

where e € £,,. Note that here we use the fact that ¢,, does not depend on the

choice of ug € V,,_, as long as ug # u+, and similarly, a., 8. do not depend on

e € &,. This is because F,_ is a triangle, and all legs of n, are associated with

one edge of this triangle, see also proposition 3.6.5. O
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7.3.7 Definition. Let m,,...,m; be an arm sequence. We call the points
Du+1,---,Dj—1 the associated vertices. The associated lines are defined as
L, ={peR? ‘ U, (p) = M, by, (p) = mei1} for v < s < j. Thus, we have
Ds, Ps+1 € Ls, whenever these are defined.

7.3.8 Lemma. Let m,,...,m; be an arm sequence, and assume that the arm
goes in the direction of the x3-axis. Assume furthermore that | € Vév with
my, (1) = ms for all s. The following are equivalent.

(i) There is an v < s < j so that Ly contains an integral point with nonneg-
ative x1 and xo coordinates.

(ii) The line Ly contains an integral point with nonnegative x1 and xo coordi-
nates for all 0 < s < j.

(iii) We have

mj_1 + Bj—1m;_1 — by, m; + Z [ﬂem]-‘ <0. (7.12)
Qe

(67
i1 eegnj

(iv) We have zmj # 0.
(v) We have zl/’\gj =1.

Proof. Using lemmas 7.1.8 and 7.1.12, we see that (iii), (iv) and (v) are equiva-
lent. For brevity, let us say (in this proof) that p € R? is good if it has integral
coordinates, with the z; and x5 coordinates nonnegative. Let p,41,...,pj—1 be
the points associated with the arm sequence. We start by proving the following

Claim. Assume that L, contains a good point for some v < s < j. Then p,
is a good point if s > v, and psyq is good if s +1 < j.

We prove the claim for ps, the proof for psy; is the same. By proposi-
tion 3.6.5, F,, is a triangle with exactly one edge on the boundary OT'(f), and
we can assume that this edge lies on the zoz3 plane. For k = 1,2, 3, let ¢ be
the standard coordinate functions in R?, that is, ¢, (p) = (p, (1,0,0)), etc. Using
notation as in eq. 7.11, we find

(W) (Ps) = buo (ps) = [&mﬂ 7

Qe Qe

where e € &,,, which shows that 0 < ¢1(ps) < a.. From proposition 3.2.10 we see
that the restricted function 41|z, has content .. This shows that ¢1|7_nzs takes
its minimal nonnegative value at p,. Since L, is parallel to the edge F,,, N F,_, .,
we find that ¢; and /5 define opposite orientations on Lg. Thus, if £5(ps) < 0,
we have /5(p) < 0 for all integral points p € L for which ¢;(p) > 0. By the
assumption, this is not the case, so ¢3(ps) > 0, proving the claim.

The implication (i)=(ii) now follows from repeated usage of the claim.
Namely, if (i) holds for some s < j — 1, then psy; € Lg is good. But this
means that ps11 € Ls41 is good, and we can apply the claim to Lgiq. This
proves that L, contains good points for any r > s. A similar induction proves
the same statement for r < s. Thus, (ii) holds.

Next, we prove (ii)=-(iii). Let p € L;_; be good. Subtracting eq. 3.1,
with n = n; and evaluated at p, from eq. 7.12, we see that it is enough to
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prove [femj/ac] < Ly(p) for any e € &,;, with u = u.. Let n’ = n}. By
proposition 3.6.5, £,,; is a nonnegative linear combination of #; and ¢5. Therefore,
we have £,/(p) > 0. The formula a.l, = B.l, + ¢, therefore gives £, (p) >
Bemj/ae, hence £,(p) > [Bem; /], since £, (p) € Z.

Finally, we prove (iii)=-(i). Assuming (iii), we will prove (i) with s = j — 1.

Let u_ = up; n, , andlet {1, /> and 8,1”, , Ezj be as in proposition 3.6.5. Take e; €

5,1Lj. Then ¢, = ¢, restricted to the line L, has content a., by proposition 3.2.10.
Thus, there is a unique integral point p € Ly so that 0 < ¢1(p) < ., and it
suffices to show f5(p) > 0. Subtract eq. 3.1 for n = n;, evaluated at p from

eq. 7.12 to find
3 V“ﬂ (P <0, (7.13)

We have

_ ﬁemj -‘1-21(}7) _ lrﬁemj-‘

Qe Qe

Zuel (p)

by the definition of p, and the fact that £,  (p) € Z. Therefore, the summands
in eq. 7.13 corresponding to e € Sﬁj vanish, and we are left with summands

corresponding to e € &, yielding

ﬂemj + ZQ (p)
e

= lu(p) 2 Vmﬂ

Qe

for e € 52],, hence Zg(p) > 0. If 5 = 05, then we are done. Otherwise, we have
Uy = cre, £y + {1 50 we find £o(p) > 0, since £1(p) < ae,. O
7.3.9 Lemma. Let m,,...,m; be a nonzero arm sequence and assume that

v < r < j. Assume furthermore that the equivalent properties in 7.3.8 hold.
Then, for v < s < j we have

Ms—1 < 1t = s < Dot
ms_l(ZKfE) - mS(ZKfE) mS(ZKfE) m5+1(ZK7E)

(7.14)

and
ms+1 mg = mg < ms—1
ms+1(ZK—E) - mS(ZK—E) mS(ZK—E) ms_l(ZK—E)'

(7.15)

Proof. We will prove eq. 7.14, eq. 7.15 follows similarly. Assume that the arm
goes in the direction of the x5 coordinate and let p, 41, ...,p;—1 be the associated
vertices. Let B, = U]_, C,, (Zx — E). The functional

an—l e’ﬂr

b = -
mr_l(ZK—E) mT(ZK—E)

seperates the diagram I'( Zx — E) into two parts, namely F), (Zx—E),..., Fy, (Zx—
E), where it is nonnegative, and the other faces where it is nonpositive. There-
fore, ps € B, if and ounly if ¢,.(ps) > 0, with equality if and ony if ps € 9B,.
Thus, the left hand side of eq. 7.14 gives ps ¢ B?, which gives ps ¢ Bsy1, which,
again, translates to the right hand side of eq. 7.14. O
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7.4 Multiplicities around v(7)

In this subsection we assume a fixed step i of the computation sequence from
definition 5.2.2. We also assume |[N| > 1.

7.4.1 Lemma. Let u € Vy(;) and assume P; £ (. Then
my(Z;) = min {£,(p) |p € P} .

Proof. By lemma 5.3.10 we have

P — {p € HZ,(Z)n T ‘Vu € Vagiy  Lulp) > mu(Z)} .

It is therefore enough to show that for any u € Vy(;), there is a p € P; so that
Cu(p) = mu(Z;). By corollary 4.1.7, there is a u' € Vy(;) so that £y, £, form
an affine basis when restricted to HZ7;)(Z;). Therefore, thereis a p € HZ, (Z;)
so that £,(p) = my(Z;) and £,/ (p) = mw (Z;). If Fy; is a triangle, then there
is a u” € Vy(;) so that u,u’,u" represent all bamboos and leg groups of v(i).
Furthermore, we must have £,/ (p) > my(Z;), since otherwise, by the above
description, we would have P; = ), a contradiction.

Assume now that F ;) is a trapezoid. If u lies on a bamboo not correspond-
ing to the top edge of I;;)(f) (see definition 4.1.6), then we may choose u’ with
the same property. Now define p in the same way as above (note that all vertices
of a trapezoid are regular). It is then easy to see (from e.g. proposition 4.1.5)
that for any u” € Vg with £y # £y, £y, the function £, restricted to the
cone

{v € Hy(2) | 0u) = mu(Z0), ) = mar(20) ]

takes its maximal value at the vertex p. From the assumption P; # ), we now
find £, (p) > myn(Z;) for all "’ € Vs(i) and therefore p € P,.

The last case we must consider is when Fy(;) is a trapezoid and u lies on
a bamboo corresponding to a top face. We have P; C 7 Fy;)(Zx — E). Since
the length of the interval £,(Fy;)(Zx — E)) is one, we find that if £, takes an
integral value on 7;Fy;)(Zx — E), then it must be [7;m,(Zx — E)]. In other
words, if p € P;, then £, (p) = [Fimy(Zx — E)] (in the case 7; = 1, this gives
ly(p) = my(Zx — E) or L,(p) = my(Zx — E) + 1, but in the latter case, the
point p has a negative coordinate). This finishes the proof of the lemma. O

7.4.2 Corollary. Assume that F,, is a trapezoid, and that ny € N so that
Fpny NV Fy, is the top edge of the trapezoid and that v(i) = ng. Then {,(p) =
my(Z;) for all p € P;, where u = upg pn, -

Proof. This follows from the above proof. O

7.4.3 Lemma. Assume the notation in 7.3.1 and that v(i) = n, for some
v<r<j. Foranyl € S;, there is a unique p € P; so that m,(l) = £,(p) for
all n € Ny(iy.

Proof. If e € Ey(;), then lemmas 5.1.5 and 7.1.8

Bemp() (1)

Qe

(1) = [ ] "
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Let uy,u_ € Vg, U+ = Up(i)n,,, and take e € ;). By corollary 4.1.7, the
functionals 3y, £y, , £y, form a dual basis of Z3. Therefore, there is a p € Z>
satisfying
Coiy (P) = My (1) = mg) (Z:),
Eue (p) = My, ('(/)(l e\ (716)

Cuy (p) = My, (1)) = : > ma, (Z:).

[

3
IS
N

The formula for ¢, (p) gives an integer by lemma 7.1.2. Furthermore, the
inequality holds by lemma 5.1.5, using [ > Z;|»r. We have therefore shown that
Lu(p) = my((1)) for all u € Vy(;) except for u_. But, since Zz # 0, we have
(¥(1), E5(;)) = 0 by lemma 7.1.12, hence

_bﬁ(i)mﬁ(i)(w(l)) + Z my(Y(1)) =0 = —ba(ayl U(Z Z bu(

uEV,g(,i) uGVv(l)

Cancelling out, we obtain m,,_ (1(1)) = ¢,,_ (p) as well. This shows that we could
have replaced the third equation in eq. 7.16 with a corresponding line with u re-
placed by u_. In particular, we have £, _(p) = m,,_(¢(1)) > m,_(Z;). We have
therefore shown £, (p) = my(1(1)) > my(Z;) for all u € Vy(;). By lemma 5.3.10
we have p € P;. Now, we have m,,, ., (1) = apmu, (V(1) —mye) (1) = arly, (p) —
Ci(iy(P) = ln, ., (p), and my,,_, (1) = £y, _, (p) similarly. Since the functionals £,
with s =7 — 1,7, r + 1 form a dual basis of Q3, uniqueness follows. O

7.4.4 Lemma. Assume the notation in 7.3.1 and that either v(i) = nj, or
v=1and v(i) = ny. For anyl € S; there is a unique p € P; so that my;_,(l) =
gnj71 (p)

Proof. We prove the lemma in the case when (i) = n;, the case 9(i) = n; is
similar.

Let u_ = upn; n;_, € Vy(;) as above and ug = ue € Vy(;) for some e € &,,. If
©(7) has a leg group with more than one element, choose g from this leg group,
otherwise choose ug arbitrarily. Then there is a unique u4 € Vy(;) lying on a leg
not in the same leg group as the leg containing ug. Define p € Z? using eq. 7.16,
but with u; and n,y; replaced with w_ and n,_; in the third line. Similarly
as above, we find p € Z3, as well as £, (p) > mu, (¥(1)) = my, (Z;) showing
p € P;. The equation m,,,_, = £, _, (p) now follows from m,,_(¥(1)) = £,_(p)
as above.

Next we prove uniqueness. Use the notation in proposition 3.6.5. We can
assume that £, for v =y, n, ., (i), ue, with e; € 51 form a dual basis of Z3.
Let Lo, ..., L;j_1 be the associated lines. We have p € LJ 1Nconv (F, (Zx —E)U
{0}) NRZ,,. By proposition 3.2.10, we see that Maxp, (z,-g)f = maxp, (1 —
1 = a. — 1. By the same lemma, the restriction £1|Lj71 has content «. There-
fore, p is determined as the unique point on L;_; for which 0 < ¢1(p) < . O

7.4.5 Lemma. Assume the same notation as above and assume that v(i) = n,
for some v < r < j. Let p € P; be as defined in lemma 7.4.3 or lemma 7.4.4,
depending on whether r < j or v = j. Define m,_1 = £, _,(p) and m, =
Ly, (p). We have B,._1m,_1+m, =0 (mod a,-—1), and we define an arm sequence
mo,...,m; as in lemma 7.3.2, with associated vertices p,41,...,pj—1. Then
ps=p forall s <r.

63



CEU eTD Collection

Proof. By definition, it is equivalent to show ms = ¢,,_(p) for s < r, as well as
Myq1 =Ly, (p) in case r < j.
First, assume that r < j. Take vy = uy, n,,, € Vn,. We have

o énv—l(p) +Br—1£nr (p) o my—1 +Br—1m7'
e

Similarly as in the proof of lemma 7.4.4, we have 0 < £,,-(p) < a, and so

_ ﬂemr +€n; (p) _ lrﬂemr—‘

Qe Qe

Cu(p) (7.17)

for w = u. € V,,, where e € &, . Hence, subtracting eq. 7.10 from eq. 3.1 we
get
Brln, (p) + gnr+l (p) _ Brmy + My
o B o

showing ¢, ., (p) = my41. This shows p = p,. Next, we prove by descending
induction that ps = p for s < r. Indeed, assuming that ps11 = p, we have
ln,(p) = ms and £, , = msp1. We can then follow the same procedure as
above, once we prove eq. 7.17 for u = u. € V,, with e € &,,. Since a.l, =
Beln, + Lz, it is enough to prove 0 < £, _(p) < ae. The first inequality is clear,
since p € Zio. For the second, by permutation of coordinates, we may assume
that the arm ng,... ,m; goes in the direction of the coordinate x3, and that
lnx = {1. By construction, the projection of the sets conv(F,,) U {(0,0,0)})
to the zjx4 plane lie within the triangle with vertices (0,0), (ae,0) and (0, a)
for some a € Z~g, for t > s, by proposition 3.2.10. In particular, we find,
Co,(p+ (1,1,1)) <mingrer, lo, (p'+ (1,1,1)) < ap +4,,(1,1,1). Equality can
only hold if p+ (1,1,1) = (a0, *), which is impossible since p € Z3 . O

7.5 Plan of the proof

The proof of theorem 7.0.2 will be broken into cases in the remaining subsections
of this section, each dealing with various technical issues that arise. In this
subsection we describe some general strategies common to these cases.

7.5.1. For any i and p € P;, let S;, = {l es; |Vn € Noy : mu(l) = En(p)}.
Also, let S} = S;\U,cp,Sip- By lemmas 7.4.3 and 7.4.4, we have S; = 11, 5, S; ,
if ©(¢) is not a central vertex. By theorem 5.3.2; the right hand side of eq. 7.1
equals |P;[, while the left hand side is ), . zN. Theorem 7.0.2 is therefore
proved as soon as we prove the equations

d =0 (7.18)

les;

and

o =1 (7.19)

lES/L',p

Although this is not always the case, we will follow this course of action in many
of the cases.
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7.5.2 Lemma. Let m,,...,m; be an arm sequence as in definition 7.5.4 and

assume that for some r < j we have m, > m.(Z;) and my11 > my41(Z;), as

well as
my My41

< .
mr(ZK — E) - mr+1(ZK — E)

Then mg > msti) for all s > r. Similarly, if v > v and m, > m.(Z;) and
Mmye—1 > my_1(Z;), as well as

(7.20)

my me—1
< , 7.21
mT(ZK—E) - mT,]_(ZK—E> ( )

then ms > my(Z;) for all s <.

Proof. We give the proof of the first statement, the second one is similar. We
need to prove the inequality m, > m4(Z;) for s > r+ 1 as the cases s = r,7+ 1
are assumed. By lemma 5.3.5, it is enough to prove mg > 7;ms(Zx — E) (note
that we can have ¢; ,, # 0 only if 7;m,, (Zx — E) € Z). But this follows by
using lemma 7.3.9 iteratively to find

o< Mp41 < My42 < < ;e
f mnr+1(ZK - E) mnT+2(ZK - E) My (ZK - E)

O

7.5.3 Lemma. Assume that a face F,, C I'(f) is a central trapezoid with a
nondegenerate arm ni,...,n; in the direction of the x1 axis as in 7.3.1. Let
p1 € F,, be one of the endpoints of the segment F,, N F,, , and let py € F,,
be the closest integral point on the adjacent boundary segment. Then the vector
p2 — p1 has nonnegative o and x3 coordinates.

Proof. We can assume that p; is on the xjxo coordinate hyperplane. Then
l3(p1) = 0, thus l3(ps — p1) = £p, > 0. Take the remaining vertices ps,ps € Fp,
so that [p1,p4] = Fp, N Fy,. By the same argument as above, we then have
lo(p3 —pa) > 0.

If the segment [p1,p4] is a top edge, then [ps, ps] is a bottom edge, and so
we have ps — p3 = a(p1 — p4) for some integer a > 0. Thus, fa2(ps — p1) =
Uo(ps — p1) + L2 (p3 — pa) + La(p2 — p3) > (a — 1)la(p1 — pa) = (@ — 1)la(p1) > 0.

If [p1, p4] is not the top edge, then the top edge is either [ps, p4] or [p1,p2]. In
either case, these two edges are parallel, and so ¢3(p2 — p1) and l2(ps — p4) have
the same sign and the result follows since we already proved ¢o(ps —ps) > 0. O

7.5.4 Lemma. If (Zi,EW)) >0, then S; = 0.

Proof. If | € S;, then | > Z;|n and my(iy (1) = myiy(Z;) and Sz(l) # ?. By
lemma 7.1.6, we then have ¢(I) € Sz(l), and so ¢(I) > Z;, by lemma 7.1.9. We
get (¥(1), Ey)) > (Zi, Esy) > 0, a contradiction. O
7.6 Case: 0(i) is central

In this section we will assume that (7) is a central node. We will use the
notation given in proposition 3.6.4(i).
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7.6.1. Assume that I'(f) has three nondegenerate arms. For k = (k1, k2, k3) €
72, define an element I, € V2 as follows. Require My (k) = mn})(Z‘) and
My (ly) = min,ep, £nx(p) + ks ne.  Furthermore, require that for each
k = 1,2,3, the sequence M., (Ix) is an arm sequence. Since SBpny nrlns +Cnxlzs =
0 (mod auys ns ), we have B nrmips (Z;)+ming,e p, £os (p) = 0 (mod apgs ). Thus,
I, with the required properties exists and is unique by lemma 7.3.2. Now, by
lemma 7.1.2 and remark 7.3.3, we find that if [ € S;, then there is a k so that
I = lj,. Indeed, we find k; = (M (1) — min, e p, £nr(p))/ns nr-

In the case when T'(f) has two nondegenerate arms, define I, € V2 for k €
7?2 as above, and similarly for k = k; € Z if T’ contains a single nondegenerate

arm.

7.6.2 Lemma. We have I, > Z; if and only if k > 0, that is, k., > 0 for
k=1,23.

Proof. Using lemma 7.4.1 and lemma 5.1.5 we find
m’ﬂ’f (lk) :;Ienz% (ang,n’f (gu" n's (p) + kn) - Bng,n’fgng (p))

:ang,nf (mu 5t (Zz) + kn) - 5n§,nfmng (Zz)

Mt (Z3) + Brgg s s (Z5) _
_ang’nT ’V Qpr Onli 1 ’ o Bng,n*f mng (ZZ) + ang,n'f kj"‘“
0°'"1
and 0 My (Ik) > mpr (Z;) if and only if k. > 0.
Now, assuming k > 0, we get [, > Z; from lemma 7.5.2. O

7.6.3 Lemma. With I}, as above, we have ((Iv), Eg)) = (Ziy Egi)) + >, -

Proof. By construction we have my«(l.) = £(px) + kxans nx for each x, where
Pr € P; minimizes /,,~. Therefore LT (W(lk)) = Eunng (pe)+k, = Mot o (Z)+

k. Furthermore, if e € &), then my, (¢ (k) = M., (Z;) by lemma 7.1.8 and
lemma, 5.1.5. Therefore, (Ix, E5z)) = (Zs, E5)) + 2, k- O

7.6.4 Lemma. Assume that v(i) is a central node and that (Z;, Ey;)) = 0.
Then the set S; consists of a single element | satisfying le =1.

Proof. By 7.6.1 and lemma 7.6.2, we have [ = [ for some k£ > 0if [ € S;.
By lemma 7.6.3, we have (I, E5(;)) = >, kx, so zﬁiﬁ(i) = 0 unless k = 0 by
lemma 7.1.12. Thus, to prove the lemma, we must show that, indeed, Iy € S;.

For this, we must show z{;/n =1 for all c¢. By theorem 5.3.2, we have |P;| = 1,
9 jC _
let p be the unique point in P;. Let L% be the lines associated with the arm
data my~ (lp) for any x. Then p € Lf, thus z{[\)[nn =1 by lemma 7.3.8. O
. e

7.6.5 Lemma. Assume that Fy(;) is a trapezoid and that P, £ 0. If k is as in
7.6.1 with k > 0, then 2\ . =1 if j* > 0.

Proof. Let L, ..., L%._; be the lines associated with the arm sequence m (Ix), . . - s M, (Ik)-

Let p; be one of the endpoints of the segment Fyx N Fy,r, and py the closest
integral point to p; on the adjacent edge of F,x with endpoint p;. Take p € P;
so that myx(Ix) = £nr(p) and set po = p + ke (p2 — p1). Take v', k" € Z so that
{k,k',k"} ={1,2,3}. By lemma 7.5.3, pp has nonnegative z,+ and x,~ coordi-
nates. Furthermore, py € L because £y,x (p2—p1) = 0 and Lpx (p2—p1) = g nx-
The lemma now follows from lemma 7.3.8.
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7.6.6 Lemma. If (i) is a central node, then )", g = max{0, (= Z;, Ey;))+1}.

Proof. The case when (Z;, E5@;)) > 0 is covered by lemmas 7.5.4 and 7.6.4. We
start by showing that if Fy(;) is a triangle, then this is indeed the case. We
have (Z;, Eys)) > 7i((Zx — E), Eysy) = —T4, because Z; > 7i(Zx — E) and
my(y(Zi) = Timyy(Zr — E) If 7; < 1, then the statement follows. If 7; = 1,
then P; C (Fy) — (1,1,1)) NZ3; = 0 and so (Z;, Ey(;)) > 1 by theorem 5.3.2.

We therefore assume that Fv(l) is a trapezoid and that (Z;, E3)) < 0. In
that case, if k > 0, we have zl =1 for all N 5 n # 6(i). Writing n = n! with
r > 0, this follows from constructlon if r < 5%, and from lemma 7.6.5 if r = j*
We therefore have S; = {lk ‘ k>0, ZlNi(i #* 0}

If T'(f) has exactly one nondegenerate arm, then /\/},(i) = {nl}. By lem-
mas 7.6.3 and 7.1.12, we have zl @ =1 if k& < (=Zi, Ey(;)), and z{:f,w) =0
otherwise. Therefore,

SV =|{k € Z|0 <k < (~Zi, Eyp)}| = max{0, (= Zi, Es(p)) + 1}.
les;

If T'(f) has two nondegenerate arms, then, for k = (k1, k), we have z{:{ﬁ(i) =
Lif ky + ko = (—Z;, E5¢;)) and zz’l\cf = 0 otherwise. Therefore,

Z Zl {k’ S Z2>0 | /ﬁ + kz ( Zi,E,D(,L‘))}| = max{O, (—Zi, E()(i)) + 1}.

les;

If T'(f) has three nondegenerate arms, then we have Zﬁ[ﬁ(i) =1if ) k.=
(=Z;, Eyiy), zl/;/’@(i) = —1if Y k. = (—Z;, Ey;)) — 1 and z{:/ = 0 otherwise.
. = (—Ziva(i))}|

Therefore,
{k €z,
an = (—=Zi, Es)) — 1}’

- {kezio
K

=max{0, (—Z;, Eyy) + 1}

IR

leS;

O

7.6.7 Remark. It is simple to verify that in the case when I'(f) has three
nondegenerate arms, then, for each p € P;, there is a unique element [, € S;
and that z{;/ = 1. Therefore egs. (7.18) and (7.19) do indeed hold in this case.

This is, however, not generally true in the case when I'(f) contains a trapezoid,
and only one or two arms.

7.7 Case: One or two nondegenerate arms

In this subsection we assume that the diagram T'(f) has one or two nondegen-
erate arms. We will assume given a fixed step ¢ in the computation sequence
and that () is not the central node.

7.7.1 Lemma. We have ), g 2N = max{0, (—=Zi, Eyi))}-
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Proof. This will follow from lemmas 7.7.2 and 7.7.3 and lemmas 7.4.3 and 7.4.4,
as well as theorem 5.3.2. O

7.7.2 Lemma. Assume that the diagram T(f) contains exactly one nondegen-
erate arm and that Fy;) is not a central face. Then, for each p € P;, the set
Si p contains a unique element [, and zl/;/ =1.

Proof. As in 7.3.1, assume that N' = {n,,...,n;}. We can then assume that

v(i) = n, for some r > 0. Fix ap € P. If r > v, let m,,...,m; be the

arm sequence constructed in lemma 7.4.5, with the requirement m, = ¢, _(p)

and m,_1 = {4, ,(p). T r =v =1, let mq,...,m; be the arms sequence

defined by requiring my = ¢, (p) and mg = £,,(p), which exists and is unique

by lemma 7.3.2. We then have an element I, € V4 with m,,_(I) = m for all s.
The inequality [, > Z,; follows from lemma 7.5.2.

Let Ly for s = v,...,7 — 1 be the lines associated with the arm sequence
My,...,mj. We then have p € L,_; if r > v and p € L, if r < j. By
lemma 7.3.8 we therefore get zl/;[nj = 1. In order to show le;[,n,, =1, we

must, by lemma 7.1.12, prove (¢(l,), En,) < 0. We have m,, (l,) = ¢, (p)
by lemma 7.4.5. Since —by, ly, (p) + > ey, fu(p) = 0, it is enough to show
my(P(1)) < Lu(p) for u € Vyy. In the case u = up, n,,,, we have m, =

Bry nysrMny, + My = By g o, (P) + Ly (p) = Lu(p) by lemma 7.1.2 and
the definition of ¢,,. If, however, u = u, for some e € &, , then

Bemng-‘ S 6€£n0 (p) +£n: (p) _ Eu(p)

Qe

malw0) = | S
by lemma 7.1.8 and the fact that Bcly, (p) +£n=(p) = 0 (mod ) and £,,: (p) > 0
since p € Zgzo- O

7.7.3 Lemma. Assume that the diagram I'(f) contains ezactly two nondegen-
erate arms and that v(i) is not a central face. Then, for each p € P;, the set
S; p contains a unique element [, and le;/ =1.

Proof. Use the notation given in proposition 3.6.4. We can then assume that
9(i) = nl for some r > 1. Similarly as above, using lemma 7.3.2, we find
numbers m}, .. .,m}l € Z so that if | € S; p, then m,,1(I) = m}l for 0 <r < jl.
Furthermore, by lemma 7.4.5, we have m} = {,1(p) for s < r + 1. If I(f)
contains a central edge, let ¢ be the number of central edges. If I'(f) contains
a central node, set ¢ = 0. In either case, we have nl = n2__ for s < c. Note
that in the case of a central edge, we can assume j* > ¢ — 1 for k = 1,2, since
otherwise the statement is covered by lemma 7.7.2. In particular, we have nodes

ny,nd € N.

In the case of a central edge, we therefore have m,,:(l) = ml_, for s =0,1,
for all I € S;,. Let mg,...,m}, be the arm sequence with m§ = m} and
m3 =m?2_,. Then, for any [ € S;,, we have m,,2(I) = m2.

In the case of a central node, we have a number m? € Z, uniquely determined
by the equation

2 1
mi + Bnz n2mg

1 1
Bné,n} my + my n Z 5emé —0
o o ’

—bim}
- ni Mo +
ng,ny
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Setting m2 = m{, lemma 7.3.2 determines an arm sequence m? with mp2 (1) =
m?2 for all 0 < s < j?and € S, ,. )

We define I, € V4 by my(l,) = m¢. We have proved that if I € S; ,, then
I =1,. To prove the lemma, we must show that indeed, l,, € S; ,. For this, we
need to prove that zlf;f’n?e =1for e =1,2 and that [, > Z;. As in the case of a

single nondegenerate arm, we find le;[,nl_l =1, and my1 (Ip) > my1(Z;) for all s.
J

Let LY be the lines associated with the arm sequence mg,...,mj.. In the
case when I'(f) contains a central edge, note that L = Ll ;. In particular,
p € LE, and so z{\/nz =1 by lemma 7.3.8. It is also clear that m? > m,z2(Z;)

piT52 s

for s =c¢,c— 1 and that

L2 (p) Loz (p)
: (Zx —FE) ~ mng(ZK —FE)

c—1

my

since p € Cpz. Therefore, by lemma 7.5.2, we have my2(l,) > my,2(Z;) for
s > c—1, hence [, > Z;.

Next we consider the case when T'(f) contains a central node. We need to

prove m2 > m,2(Z;) for s > 1 and Zan2 = 1. The former follows in a similar
s y2hl .7‘2

way as above as soon as we prove
2 2
my mi

M2 (Z — E) ~ my2(Zx — E)’ (7.22)

Comparing the two equations

2 2 1 1
mi + Bpz p2m Bt pimg +m Bemd
1 ng,ni’ "0 1 ng.ni "0 1 E eMo | _

a2 2 a1 1
ng,ny ng,M7 ecf 1

and

€n2 +5n2 nzfn2 p Bnl nlgnl p +€n1 p ﬁegnl p +€n* p
gt B0 )| )+ )

)

(67

« Qe

2 2 1 1
ng,Mny o.My ecf 1
"0

End the fact that £, (p) = m} = m3 and b (p) = mi we find m? > ln2(p),
ence

mng(ZK _E) B mn%(ZK _E) B mn%(ZK _E) B mnf(ZK —E)’

proving eq. 7.22. We observe from these equations that we also have m? =

lp2(p) (mod a2 2)
Finally, we will prove le » = 1. By lemma 7.3.8, it is enough to prove that
2

pv”j
the line L2 contains a point with nonnegative z; and z3 coordinates.
We start with the case when Fné is a trapezoid. Let p; be one of the
endpoints of the segment F,2 N F,,2, and py the closest integral point on an
adjacent boundary segment of F,z:. By lemma 7.5.3, the vector po — p; has

69



CEU eTD Collection

nonnegative r; and x3 coordinates. Since m? > Enf (p), as we proved above, the
same holds for the point
m% - fnz (p)

1

Po=p+ (p2 —p1)

Ang.n3

which is an integral point by our previous observation. Since Eng (p2—p1) =0
and £, (p2 —p1) = Qn2 2, by proposition 3.2.10, we find py € L3.

Next, we will prove zﬁ[ "2, = 1, assuming that Fo1is a central triangle.
Define a point py by requiring ¢,,(p) = my,(l,) for n = n},nf,n?. Using the
same proof as in lemma 7.3.6, we see that py exist, is unique, and py € Z3. By
definition, we also have py € L} and py € L2, so, as in the previous case, it
suffices to show that £1(pg) > 0 and £3(po) > 0. Since F;1 is a central triangle,
and I'(f) has one degenerate arm, we have |£,,1| = 1. Let e € £,1 be the unique

element in this set. We then have
elltn l egn +£n*
(1) = V m é(p)w - Belny (p) + Loz (p)

Qe

Qe

Furthermore, subtracting eq. 3.1 (with n = n}), evaluated at py, from (I, Ez) =
0, we get my,, (1) = €y, (po), thus, €, (p — po) > 0. Evaluating eq. 3.1 at p — po
gives £, (p— po) + L2 (b — Do)/ 2 = 0 and 50 £ya(p — po) < 0.

Give names g1, g2, g3 to the vertices of the triangle F,1 asin fig. 5, that is,
q1 lies on the zor3 axis, etc. By definition, we have p,py € L§. Furthermore,
the line L} is parallel to the primitive vector g, —g3. Therefore, there is a k € Z
so that po = p + k(g2 — g3). By convexity of I'y (f) we have £,2(g2 — ¢3) > 0.
Therefore, by the previous inequality, we get k > 0. Since ¢3(g2 —q3) = ¢3(q2) >
0, we have ¢3(pg) > 0. If k = 0, then py = p, and we get ¢1(pp) > 0. Otherwise,
we have pg = p+ k(g2 —g3) with k£ > 0. Since p € (Uf;llen; Nr_(f))—(1,1,1),
we have £2(g3 —q2) > {2(p), therefore, £3(py) < 0. Since the arm in the direction
of the x3 axis is assumed degenerate, we have a,b € Z~ so that £,,» = aly +bls.
Furthermore, we have

ﬂemné (lp)

Qe

b (0) = o )~ B (o) = | | = Bemayit 0.

All this gives £1(pg) > 0, finishing the proof. O

7.8 Case: Three nondegenerate arms

In this subsection we will assume that the diagram T'(f) contains a central
node and three nondegenerate arms. We will assume given a fixed step ¢ in the
computation sequence and that ©(i) is not the central node.

7.8.1. We use the notation introduced in proposition 3.6.4(i). We can assume
that for some 1 < r < j' we have (i) = n!. By lemmas 7.4.3 and 7.4.4, we
have S] = (), so in order to prove eq. 7.1, it is enough to prove Zlesi,p le =1

for all p € P;. For k = 2,3, define
Sip= {l € Sip | My (1) < énf(p)}
and set Sgp =Sip\ (Sﬁp U Sip).
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7.8.2 Lemma. We have ) 2V = max{0, (—Zi, Ey(i)) }-

Proof. This will follow from lemmas 7.8.7, 7.8.11 and 7.8.13 and theorem 5.3.2.
O

7.8.3. By lemma 7.3.2, there is an arm sequence mj}, . . . ,m}l satisfying ml_; =

lp1_ (p) and my = £,1(p), and we have m,,1 (1) = m; for all [ € S; . Fix an [ €
Sip- We then have my,2 (1) = —B,2 n2mp2(1) = —Bp2 n20,2(p) = €2 (p) (mod a2
and so there is a k € Z so that m,2(l) = £,2(p) + kayz ,2. Using the equatlon

n nén En een +£TL*
141+Z—5001 g+ Cni 275 L
ng,nk e

ecf 1
0

n

and the fact that (¢(1), E,1) =: 1 € {0, —1} by lemma 7.1.12, we find that

Cys(p) — mP™" R elp1 (p) + L
n‘f(p) 1 —k—n+ Z ’Vﬁ ”0-‘ B B n(l)(p) e(p). (7.23)
O3 3 Qe Qe
01 eegn(l)
where mPF" = m, 5 3(1). Note that since (Bel,,1 +0nx )/ is an integral functional,

the summand corresponding toe € gné on the rlght in eq. 7.23 is integral. Slnce
Cn1(p) = myy and £,x(p) > 0, each such summand is < 1. Thus, it follows that

o
these summands are nonpositive.

7.8.4 Definition. For k € Z, define m>* = m} and m>* = ¢, 2(p) + kaz p2-

Furthermore, for n = 0,—1, let mg’k’” = m{ and define mi’ o’ as the unique

solutlon to eq. 7.23. Then, by lemma 7.3.2, there exist unique arm sequences
.3

(m? k) _o and (m2km)J_ with the given first two initial terms. Define l’;’” €

VY by My (I57) = ml for 0 < s < j', my2(I87) = m2¥ for 0 < s < j2 and

M3 (l];’") =m3F" for 0 < s < 55

In 7.8.3 we have thus proven

7.8.5 Lemma. Ifl € S5;,, thenl = l’;’” for some Z and n € {0,—1}. In fact,

we have
Sip {lk’”

7.8.6 Definition. Let ky € Z be the unique number so that m3 Fo.0 Cn3 (p).

k.n > _ N _
l Z Zlk n 'r‘L2 = Zl;'nﬁblj‘g =1 .

52

O

It is clear from the remark after eq. 7.23 that kg > 0.
7.8.7 Lemma. We have S’Zp N Sf’,p = (.

Proof. If l’;m € 5’2 N S’f’p, then, by definition, ¥ < 0 and k > ko +n > 0. This

is clearly imp0551b1e O
7.8.8 Lemma. We have m,1 (I5") > my,1(Z;) for 0 < s < j' and zlf}f‘n = 1
p N

for any k,n.
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Proof. This follows in exactly the same way as the corresponding statement in
the proof of lemma, 7.7.2. O

7.8.9 Lemma. If k > 0 then my,2(I57) > m,2(Z;) for 0 < s < j2. Similarly,
if k <kog+mn, then mng(lk’") > Mps (Z;) for 0 < s < j3.

Proof. We prove the statement for the second arm. The statement for the third
arm follows similarly. If £ > 0, then

mp2 (lﬁﬂl) an (p> gnﬁ (p> mp?2 (ZI;W)

mn%(ZK _E) B mnf(ZK _E) B mng(ZK _E) mng(ZK _E)7

since p € R3 )\ Ui;Cng (as in the proof of lemma 7.3.9). Thus, the result
follows from lemma 7.5.2. O

7.8.10 Lemma. (i) If F,1 is a trapezoid and k > 0, then zl/}c{n , = 1.

n:
P oTh,2

(i1) If Fyy is a trapezoid and k < ko + 1, then le};/’"’,n% =1.
J

(iii) If F,1 is a triangle, then 2%, , =1 and 2%, , =1.
0 Iy M2 lp M3
Proof. We start by proving (i), the proof of (ii) is similar. Let p; be one of
the endpoints of the segment F,2 N F,2 and ps the closest integral point to
K 0 0

p1 on the adjacent boundary segment of F,z. Let po = p + k(p2 — p1). By
proposition 3.2.10 we then have £,,(po) = mn(IE") for n = n§,n?. Thus, the
result follows from lemma 7.3.8

(iii) follows in a similar way, since my,(I9°) = £,(p) for n = ng,n?,n}. O

7.8.11 Lemma. We have Y, g. 2" =0 for k= 2,3.
G

Proof. We prove the lemma for k = 2, the case k = 3 follows similarly.
Forany [ € S7?,, we have 2N = +1. In fact, there are k € Z g and 5 € {0, —1}

so that [ = 5. Then 2N = (—1)". Therefore, the lemma is proved as soon as we

prove that for any k € Zo we have [50 € S?  if and only if ;"' € 57 . Now,

M2 (150) = my2(15~1) for all k. In particular we have zl/XO P S
s s p’ M2 P M2

Furthermore, by lemma 7.8.9, we have m,,s (l’;’”) > mng(Zi) for any k < 0 (since
ko > 0). It therefore suffices to prove that if zlj}f,o L2 = 1 then z%o s = Lif
AL P

j3
and only if zlﬂk{ 1, = lforall k < 0. But this follow immediately from
p M3
lemma 7.8.12 ’ 0
7.8.12 Lemma. If F,1 is a triangle and {a,b,c} = {1,2,3}, define the points
q1.q2,q3 € Z3 as the vertices of Fné so that qq,qy are the end points of the
segment Fpe M Fe.

(i) If Fyy is a trapezoid, then z%n o =1 forany k <0 andn € {0,—-1}.
2

i3
(it) If F,x is a triangle and either {2(p) > l2(g2) or £1(g2) < li(q3), then
N =1 for any k <0 and n € {0,—1}.

kn 3
Iy ,nj3
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(i1i) If F,1 is a triangle, (2(p) < l2(q2), and {1(g2) > (1(g3), then then Z{},ﬁ[‘",n?z =
0 for any k <0 and n € {0,—1}. ’

Proof. Take k € Z.g and n € {0,—1}. Let L}, ... 7L33—1 be the lines associated
with the arm sequence 1,3 (I5"), . .. s, (ikm).

Zs3

q1
q2

T2

g3

X

Figure 5: q1, o, g3 are the vertices of the triangle Fu.

(i) Define pg by po = p+ (ko +n7— k) (g3 — ¢1). Using lemma 7.5.3, and
the fact that kg + 7 — k > 0, we find that py has nonnegative x; and x-
coordinates. Furthermore, proposition 3.2.10 gives (,,3(po) = M3 (l’;’") and
n3(po) = My (Ikm), that is, po € L3. The result now follows from lemma 7.3.8.

(ii) As in the previous case, the result will follow as soon as we prove that
Lg contains an integral point with nonnegative x; and x, coordinates.

First, we assume /5(p) > f2(gz2). Let A =Rs¢ x R>g x R C R3. We want to
show Lo N ANZ3 # (. Now, (for the purposes of this proof only) let 7 be the
canonical projection from R? to the x5 plane. Furthermore, let ¢ be a linear
function on the zqx4 plane so that ¢(7(g1)) = ¢(7(g2)) > 0. It is then clear that
0(m(g3)) > £(m(g2))- If we define pg by the same method as in the previous case,
it is not necessarily true that po € A. We see, however, that ¢(7(pg)) > (7 (p)).
Let L € R3 be the line which is parallel to L§ and passes through p. We find
that the segment 7(L) N A is longer than the segment 7(L3) N A. This implies
that the segment L3 N A is longer than the segment L N A. Now, the segment
LN A contains p, as well as p+ ¢q; — g2, by hypothesis, and so has length at least
one. Thus, L} N A has length at least one as well. But a segment of length at
least one contains an integral point.

Now, if ¢1(g2) > ¢1(gqs), then we can proceed in a similar fashion as in (i).
Indeed, if we define py = p + k(g3 — ¢2), then, by our assumptions, we find that
po has nonnegative z; and x3 coordinates. Furthermore, we have py € L}, and
so the result follows from lemma 7.3.8.

(iii) In this case, let L2,..., L33 be the lines associated with the arms se-

quence m;,z (ll;’”)7 c M2, (l’;’"). Using proposition 3.2.10, we find that pg =

p+ k(g2 — q3) € LE. The vector q; — g3 is primitive and we have oz (g1 —q3) =
lp2(q1 — g3) = 0. Thus, L NZ% = {po + h(q1 —g3)|h € Z}. Tt is clear that
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) p
0
m(g3)

7(q2) (L)

Figure 6: A projection.

l3(g2) > f3(p) and ¢3(g3) = 0. Since k < 0, we get ¢3(pg) < 0, so we find
l5(po + h(g1 — gq3)) < 0 for all h > 0. If, however, h > 0, then

£1(po + (g1 — a3)) = li(po + (@1 — g3)) + (b — 1)l1(q1 — g3)
< li(po+ (1 — q3))
=l(p+Fk(g2—q3) + (@1 — g3))
=lp+ (k+1)(g2 —q3) + (1 — @2))
=l(p+ (1 —q2)) +b((k+1)(g2 — g3))
< 0.

Here we use both assumptions in the last inequality. We have thus proved that

no integral point in the line L2 has nonnegative z; and x3 coordinates. By

lemma 7.3.8 we get zl,m 2 =0. O
]

7.8.13 Lemma. We have Y ;g0 2V = 1.
Proof. By definition, and lemma 7.8.5, we have
SO C {00, 100 0 oy, (7.24)

Since zlj}f, . (=1)" by lemma 7.1.12, the lemma is proved as soon as we prove
P k)

equality in gq. 7.24.
In the case of a triangle, it follows from definition that kg = 0. Therefore,
lemma 7.8.10 shows that for any element [ of the right hand side of eq. 7.24, we

have ZZNQ = {\{13 = 1. Furhtermore, lemma 7.8.9 shows that for such an [ we
have [ > Z Thus [ € S; , and so equality holds in eq. 7.24. O
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