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Preface

This thesis is being submitted in partial fulfilment of the requirements for a Master’s Degree

in Mathematics for me. My supervisor for the thesis has been Professor Pál Hegedűs. The

thesis has been made solely by me; most of the text, however, is based on the research of

others, and I have done my best to provide references to these sources. Writing this thesis

has been hard but in the process of writing I feel I have learnt a lot. In this preface I give

a brief account of the thesis.

This thesis consists of six chapters. In the first chapter we have given a short intro-

duction of the subject. We have mentioned almost chronological development of lattice

theory starting from Georege Boole’s attempt for formalising logics to the current main

research. In this chapter we have described some areas in which lattices have found their

applications in practical life.

Chapter two consists of the basic concepts of lattice theory. Several examples and

counter example have been given here. As pictures speak better than texts, we have tried

to give diagrams of most of the lattices included. We have given the lattice-as-an-algebraic-

structure definition of a lattice and have stated a theorem showing the equivalence of the

two versions of the definition . Then we have mentioned the concept of ideals in lattices

and some results related to them.

Chapter three discusses special elements in lattices with examples.
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In chapter four we have discussed distributive lattices in detail. Here we have mentioned

the characterisation of distributive lattices in terms of lattices of sets. Two prototypical

examples of non-distributive lattices have been given with their diagrams and a theorem

has been stated which shows how the presence of these two lattices in any lattice matters

for the distributive character of that lattice. We have introduced the concepts of Boolean

lattices, Boolean algebras and Boolean rings and have shown the equivalence of Boolean

algebras and Boolean rings. Then modularrity of lattices has been introduced. We have

ended this chapter with the discussion of morphisms in lattices.

Chapter five introduces the concept of congruences in lattices. Some examples have

been given to have a feel of this concept. Then we have discussed the connection between

congruence lattices and distributive lattices. The concepts of factor lattice and kernels have

been introduced. We close this chapter with the definitions of three important lattices;

regular lattice, uniform lattice and isoform lattice.

In chapter six we have discussed representations of distributive lattices as congruence

lattices. We have defined some more notions like atoms and atomisticity in lattices. We

have given an example of a non-atomistic lattice with illustration. The chopped lattice

concept has been introduced with example. Then we have stated and proved a result

throwing light on the importance of chopped lattices. Finally, we have stated and illustrated

two representation theorems of finite distributive lattices: one involves congruences of a

chopped lattice and the other involves the join-irreducible elements of the distributive

lattice.
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Chapter 1

Introduction

The origin of the lattice concept dates back to the nineteenth-century attempts to for-

malise logic. In the first half of the nineteenth century, George Boole discovered Boolean

algebras. While investigating the axiomatics of Boolean algebras, Charles S. Pierce and

Ernst Schröder introduced the concept of lattice in the late nineteenth century. Lattices,

especially distributive lattices and Boolean algebras, arise naturally in logic, and thus some

of the elementary theory of lattices had been worked out earlier by Ernst Schröder in his

book Die Algebra der Logik. Richard Dedekind also independantly discovered lattices. In

the early 1890’s, Richard Dedekind was working on a revised and enlarged edition of Dirich-

let’s Vorlesungen über Zahlentheorie, and asked himself the following question: Given three

subgroups A,B,C of an abelian group G, how many different subgroups can you get by

taking intersections and sums, e.g., A+B, (A+B)∩C, etc. The answer is 28. In looking at

this and related questions, Dedekind was led to develop the basic theory of lattices, which

he called Dualgruppen. The publication of the two fundamental papers über Zerlegungen

von Zahlen durch ihre größten gemeinsamen Teiler (1897) and über die von drei Moduln

erzeugte Dualgruppe (1900), on the subject of R. Dedekind brought the theory to life well

1
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over one hundred years ago. These two pappers are classical and have inspired many later

mathematicians.

Richard Dedekind defined modular lattices which are weakend form of distributive

lattices. He recognised the connection between modern algebra and lattice theory which

provided the impetus for the development of lattice theory as a subject. Later Jónsson,

Kurosh, Malcev, Ore, von Neumann, Tarski, and Garrett Birkhoff contributed prominently

to the development of lattice theory. It was Garett Birkhoff’s work in the mid thirties that

started the general development of the subject. In a series of papers he demonstrated the

importance of lattice theory and showed that it provides a unifying framework for unrelated

developments in many mathematical disciplines. After that Valere Glivenko, Karl Menger,

John Von Neumann, Oystein Ore and others developed this field. In the development of

lattice theory, distributive lattices have played a vital role. These lattices have provided

the motivation for many results in general lattice theory. Many conditions on lattices are

weakened forms of distributivity. In many applications the condition of distributivity is

imposed on lattices arising in various areas of Mathematics, especially algebras.

In bibliography, there are two quite different mathematical structures that are usually

called lattices. The first one has to do with partially ordered sets while the other has to

do with regular arrangements of points in space. In the thesis in hand, we exclusively

consider the first case. In the 19th century, important results due to Minkowski motivated

the use of lattice theory in the theory and geometry of numbers. The evolution of computer

science in the 20th century led to lattice applications in various theoretical areas such as

factorization of integer polynomials, integer programming and Public-Key Cryptography.

In the latter area, lattice theory has played a significant role in the definition of new

cryptosystems, in the study of cryptographic primitives and in cryptanalysis. The main

goal of a cryptosystem is to ensure the safe exchange of information between the legitimate

senders and the legitimate receivers, guaranteeing at the same time, that no unauthorized

2
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party is able to recover any part of the information.

The important current research on lattice theory has been initiated by G. Birkhoff, R. P.

Dilworth and G. Grätzer. They are primarily concerned with the systematic development

of results which lie at the heart of the subject.

3
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Chapter 2

Background Definitions

Partially Ordered Set (poset): A partially ordered set, or more briefly just ordered

set, is a system P = (P,≤) where P is a nonempty set and ≤ is a binary relation on P

satisfying, for all x, y, z ∈ P ,

(i) x ≤ x, (reflexivity)

(ii) if x ≤ y and y ≤ x, then x = y , (antisymmetricity)

(iii) if x ≤ y and y ≤ z then x ≤ z (transitivity)

Examples of posets abound. The most natural example of an ordered set is P (S), the

collection of all subsets of a non empty set S ordered by ⊆. Another familiar example is

Sub(G), the collection of all subgroups of a group G, again ordered by set containment.

Covering relations: let (P,≤) be a poset. Given two elements a, b of P , one says

that b covers a if a<b and there does not exist any element c ∈ P such that a<c<b.

Atoms: Let (P,≤) be a poset. An element a ∈ P is called an atom if it covers some

minimal element of P . Consequently, an atom is never minimal. P is called atomic if for

every non-minmal element p ∈ P there is an atom a such that a ≤ p.

4



C
E

U
eT

D
C

ol
le

ct
io

n

Bounds: Let (P,≤) be a poset and Q be a subset of P . An element a ∈ P is said to

be a lower bound of Q if a ≤ x, for all x ∈ Q. The greatest member of the set of all lower

bounds of Q is called its greatest lower bound (glb) or infimum (inf) of Q. Dually, b ∈ P

is said to be an upper bound of Q if y ≤ b, for all y ∈ Q. The smallest member of the set

of all upper bounds of Q is called its least upper bound (lub) or supremum (sup).

Now we give the chief definition of the chapter

Lattice: A poset 〈L,≤〉 is a lattice if sup{a, b} and inf{a, b} exist for all a, b ∈ L.

Examples :

1) The power set P (S) of S above is a poset under inclusion. Let us define sup{A,B} as

union of A, B and inf{A,B} as intersection of A, B. Then P (S) becomes a lattice.

2) The set of all natural numbers N = {1, 2, 3, ...} with the ususal order of ≤ is a poset.

By defining sup{a, b} as the bigger of the two elements and inf{a, b} as the smaller

of the two elements, it forms a lattice.

3) For a positive integer n, let Ln be the set of all positive divisors of n. Let us define

a relation ≤ as

a ≤ b⇐⇒ a | b

Definie sup{a, b} as lcm of a, b and inf{a, b} as gcd of a, b. Then Ln becomes a

lattice. The lattice L6 is the following

6

2

1

3

Figure 2.1: Lattice L6

Examples of lattices in Group theory

5
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A lattice diagram of a group is a diagram which lists all the subgroups of the group

such that the larger subgroups occure above the smaller ones in the plane and there is a

line joining the smaller subgroups to those containing them. If H,K are two subgroups of

a group G, H ∨K = 〈H,K〉, the subgroup generated by H,K and H ∧K = H ∩K, the

set-theoretic intersection of H,K, then its lattice diagram is given by figure 2.2.

G

H ∨K

H

H ∧K

{e}

H ∧K

K

Figure 2.2: Lattice of Subgroups

Examples:

If G = V4, the Klein-four group, then the lattice diagram of G is given by the figure

2.3.

Figure 2.3: Lattice of V4

Consider the symmetric group S3 = {identity, (12), (13), (23), (123), (213)} on three

symbols {1, 2, 3}. Then the non-trivial subgroups of S3 are 〈(12)〉, 〈(13)〉, 〈(23)〉 and

〈(123)〉. The lattice diagram of S3 is given by the figure 2.4.

6



C
E

U
eT

D
C

ol
le

ct
io

n

S3

(12)

{e}

(13)

S3

(123)

{e}

(23)

Figure 2.4: Lattice of S3

Lattice diagrams of cyclic groups:

Lattice diagrams for cyclic groups of fnite orders are easy to draw. We know that if

G = 〈x〉 is a cyclic group of order n, then any subgroup is of the form H = 〈xd〉 where d

is a divisor of n. In particular, when G = Zn is the cyclic group generated by 1, we write

H = 〈d〉 = dZn as the cyclic subgroup generated by d.1.

(i) G = Zpm has the lattice

Zpm

(p)

(p2)

...

(pm)

Figure 2.5: Lattice of Zpm

(ii) G = Z6 has the lattice

7
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Z6

(2)

{0}

(3)

Figure 2.6: Lattice of Z6

(iii) G = Z12 has the lattice

Z12

(2)

(4)

{0}

(6)

(3)

(6)

(2)

Z12

Figure 2.7: Lattice of Z12

Not every poset is a lattice:

Consider S = {2, 3, 4, . . . }, the set of natural numbers deleted 1. Let us define the

partial order and sup and inf as in example 3 above, then S is not a lattice as, for example,

the gcd of 2,3 does not belong to S.

Lattice as an algebraic structure:

Richard Dedekind discovered the algebraic characterisation of lattices. A lattice as an

algebraic structure is a set on which two binary operations are defined, called join and

meet, denoted by ∨ and ∧, satisfying the following axioms:

8
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i) Commutative law :

a ∨ b = b ∨ a

a ∧ b = b ∧ a

ii) Associative law :

a ∨ (b ∨ c) = (a ∨ b) ∨ c

a ∧ (b ∧ c) = (a ∧ b) ∧ c

iii) Absorption law :

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a

iv) Idempotent law :

a ∨ a = a

a ∧ a = a

for all a, b, c ∈ L.

Hungarian mathematician G. Grätzer (1971) proved that

Theorem 1. A non-empty set L is a lattice ⇐⇒ there are two binary operations ∨ and ∧

satisfying the above axioms (i)− (iv).

9
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Substructures of Lattices

Let L be any lattice. Then a non-empty subset S ⊆ L is called a sublattice if S is

closed under the meet ∧ and join ∨.

Examples :

i) Consider (I+,≤), where I+ is the set of positive integers and a ≤ b⇐⇒ a | b. Then

for any positive integer n, (Ln,≤) is a sublattice of I+.

ii) For any a in L,

La = {x ∈ L | a ≤ x}

forms a sublattice of L.

Remark : If L, L∗ are two lattices such that L∗ ⊆ L, then L∗ need not be a sublattice

of L :

Let S be a group. Consider two families out of S - the power set P (S) of S and G(S),

the collection of all subgroups of S. Then P (S) is a lattice with the operations defined

by A ∨ B = A ∪ B and A ∧ B = A ∩ B. G(S) also forms a lattice under the operations

defined by G1 ∧G2 = G1 ∩G2 and G1 ∨G2 = the subgroup generated by G1 ∪G2. Then

it is obvious that G(S) ⊆ P (S). But G(S) is not a sublattice of P (S) as it is not closed

under union, the operation of P (S).

Ideal: A sublattice I of L is called an ideal iff i ∈ I and a ∈ L imply that a ∧ i ∈ I.

An ideal I of L is called proper iff I 6= L. A proper ideal I of L is prime iff a, b ∈ L and

a∧ b ∈ I impy that either a ∈ I or b ∈ I. In the following lattice, I = {0} is an ideal and

10
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i

a

0

b

Figure 2.8: figure

P = {0,a} is a prime ideal, while I is not prime.

Like other algebraic structures, we can also define the sublattice and the ideal generated

by a subset of a lattice.

Let H be a subset of L. Then the smallest sublattice of L containg H is called the

sublattice of L generated by H, denoted by [H]. It is the intersection of all sublattices of

L containing H. Similarly an ideal generated by a subset H of L is the intersection of all

ideals containing H, denoted by (H]. If H = a then (H] = (a] is called a principal ideal.

Meet and Join of ideals: The meet of two ideals I, J of L is defined to be the

intersection I ∩ J . The join is bit tricky defined as follows: Define

U0(I, J) = I ∪ J

U1(I, J) = {x|x ≤ u ∨ v;u, v ∈ U0(I, J)}

U2(I, J) = {x|x ≤ u ∨ v;u, v ∈ U1(I, J)}

etc. Then

I ∨ J = ∪(Ui(I, J)|i<ω)

Meet and join of two ideals are also ideals.

A characterisation theorem of an ideal is as follows:

Theorem 2. Let L be a lattice and let H and I be nonvoid subsets of L.

11
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(i) I is an ideal iff a, b ∈ I implies that a ∨ b ∈ I, and a ∈ I, x ∈ L, x ≤ a imply that

x ∈ I.

(ii) I = (H] iff I is an ideal, H ⊆ I and for all i ∈ I there exists an integer n ≥ 1 and

there exist h0, h1, . . . , hn−1 ∈ H such that i ≤ h0 ∨ . . . ∨ hn−1.

(iii) For a ∈ L, (a] = {x ∈ L : x ≤ a} = {x ∧ a : x ∈ L}

As an example, in the following lattice the principal ideal generated by the elements

a, d can be written as

1

a

b

d

0

d

c

Figure 2.9: figure

(a] = {0, a, b, c, d}

(d] = {0, d}

12
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Chapter 3

Special Notions in Lattices

Here we define some special types of elements in lattices.

Zero Element: In a lattice L an element 0 is called the zero element of L if 0 ≤ a, for

every a ∈ L. Dually

Unit Element: An element 1 is called the unit element or the all element of L if a ≤ 1,

for every a ∈ L.

Bounded lattice: A lattice L with 0, 1 is called a bounded lattice.

Examples:

i) In chapter 2, the lattice of example 1 has the empty set φ and the set S as its zero

element and the unit element respectively. Therefore P (S) is a bounded lattice.

ii) The natural number 1 is the zero element in the lattice of example 2. This lattice

does not possess the unit element. This lattice is not bounded.

iii) The lattice L6 of example 3, chapter 2 has 1 as its zero element and 6 as its unit

element. Hence, L6 is bounded.

13
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Join irreducible: An element a in a lattice L is said to be join irreducible iff a is not

a zero element and whenever a = b ∨ c, then either a = b or a = c. Dually

Meet irreducible: An element a in a lattice L is meet irreducible iff a is not a unit

element and whenever a = b ∨ c, then either a = b or a = c. If a is both join and meet

irreducible, then a is said to be irreducible.

Example: In the lattice diagram below

1

a

b

d

0

d

c

Figure 3.1: figure

a is meet irreducible but not join irreducible, d is join irreducible but not meet irreducible,

while b, c are irreducibles.

Complement of an element: Let L be a bounded lattice and a ∈ L. Then a

complement of a is defined to be an element b ∈ L, if such an element exists, such that

a ∧ b = 0, a ∨ b = 1

For example, in the above lattice, the complement of b is c and vice-versa.

Remark: If a complement of an element exists, it may not be unique. For example, in

the middle row of the diamond of figure 4.2 any two of the three elements are complements

of the third.

14
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i

a

0

b c

Figure 3.2: Lattice M3

To get around the non-uniquness issue, an alternative to a complement is defined as

Pseudocomplement: An element b ∈ L with 0 is called the pseudocomplement of

a ∈ L if

(i) b ∧ a = 0

(ii) for any c such that c ∧ a = 0, c ≤ b.

In other words, b is the maximal element in the set {c ∈ L : c∧ a = 0} and, if it exists,

it is unique.

Example: In the lattice of figure 4.3 (called Benzene) the pseudocomplement of a is

y.

1

x

a

0

b

y

Figure 3.3: figure

It is noteworthy that the pseudocomplement of y is not a (it is in fact x)

Pseudocomplemented Lattice: L is called pseudocomplemented lattice if every

element in L has a pseudocomplemnt.

Example: The Benzene is the pseudocomplemented lattice.

15
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Complemented lattice: L is called complemented if every element in L has a com-

plement.

Examples

(i) The lattice M3 above is complemented lattice.

(ii) Let X be a topological space. Then the collection L(X) of all open subsets of X is

a pseudocomplemented lattice.

The pseudocomplement of an open set U of X is (U c)o, the interior of the complement

of U .

Sectionally Complemented Lattice: L is called sectionally complemented lattice if

for any a ≤ b in L, there is an element c in L such that a ∧ c = 0, and a ∨ c = b.

Example: The lattice of figure 4.4 is sectionally complemented.

b

a

0

c

Figure 3.4: figure

Compact Elements : An element a of L is called compact if a ∈ L is such that

a 6 ∨S for an arbitrary subset S of L then there exists a finite subset S1 ⊆ S such that

a 6 ∨S1.

Complete Lattices : L is complete if sup and inf exist for any arbitrary subset of L

and every element of L can be written as a join of compact elements.

16
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Chapter 4

Distributive Lattices

A distributive lattice is a lattice L satisfying the law (called the distributive identity)

c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b) (4.1)

for all a, b, c ∈ L. A distributive lattice of fundamental importance is the two-element chain

(2,∧,∨). It is the only two-element lattice. This lattice features prominently in logic as

the lattice of truth values. Later the Hungarian mathematician Andras Huhn introduced

the concept of n− distributivity:

L is called n− distributive if in L the following identity holds:

x ∧ (
n∨
i=0

yi) =
n∨
i=0

(x ∧ (
n∨

j(6=i)=0

yj))

Remark: In the equlity (3.1), it is trivial that

(c ∧ a) ∨ (c ∧ b) ≤ c ∧ (a ∨ b)

17
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so to prove a lattice to be distributive, we only need to prove that

(c ∧ a) ∨ (c ∧ b) ≥ ∧(a ∨ b)

Examples:

i) Distributive lattices are ubiquitous. The prototypical examples of such structures

are collections of sets for which the lattice operations can be given by set union and

intersection. Indeed, these lattices of sets describe the scenery completely as stated

in the following theorem

Theorem 3. (G. Birkhoff and M. H. Stone) A lattice is distributive iff it is isomor-

phic to a ring of sets.

ii) The lattice (I+,≤) mentioned above is distributive.

18
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Non-distributive lattices : The two protoype non-distributive lattices are the M3

and N5.

i

a

0

b c

Figure 4.1: Lattice M3

i

a

b

0

c

Figure 4.2: Lattice N5

We shall call a subset A of a lattice L diamond or pentagon iff A is a sublattice

isomorphic to M3 or N5 respectively.

Now we state a theorem without proof which reveals that the sublattices isomorphic to

M3 and N5 play an important role.

Theorem 4. A lattice L is distributive iff L does not contain a pentagon or a diamond.

Lemma 5. A lattice L is distributive iff for any two ideals I, J of L:

I ∨ J = {i ∨ j : i ∈ I, j ∈ J}

Proof : Suppose L is distributive and let us take t ∈ I ∨ J . Then by theorem 2 (ii),

t ≤ i∨ j, with i ∈ I, j ∈ J . Then by distributivity, t = t∧ (i∨ j) = (t∧ i)∨ (t∧ j) = i1∨ j1

where i1 = t ∧ i ∈ I, j1 = t ∧ j ∈ J , since I, J are ideals of L. Thus t = i1 ∨ j1 for i1 ∈ I,

j1 ∈ J . This implies that I ∨ J = {i ∨ j : i ∈ I, j ∈ J}.

19
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For converse, suppose that I ∨ J = {i ∨ j : i ∈ I, j ∈ J} and suppose, if possible, L is

non-distributive. Then there exist three elements a, b, c (as in the lattice M3). Now let us

consider the principal ideals I = (b], J = (c]. (Keeping in mind the figure M3), a ≤ b ∨ c

and so a ∈ I ∨ J . But we claim that a can not be written as a = i ∨ j because if it is so

then i ≤ a, j ≤ a. Then as j ∈ J = (c], j ≤ c. Now combining j ≤ a, j ≤ c gives us

j ≤ a ∧ c = 0 < b ∈ (b] = I. Thus a = i ∨ j ∈ I = (b] = {0, b}, a contradiction. Hence L is

distributive.

We have seen in chapter 3 that comlement of an element in a lattice, if exists, is not

unique in general. But it is not the case when the lattice is distributive. We have a lemma

Lemma 6. In a bounded distributive lattice an element can have only one complement.

Proof : Let L be a distributive lattice and suppose, if possible, an element x ∈ L has

two complements y1 and y2. Then using distributivity, y1 = 1 ∧ y1 = (x ∨ y2) ∧ y1 =

(x∧y1)∨ (y2∧y1) = 0∨ (y2∧y1) = y2∧y1 = y1∧y2. Similarly, y2 = 1∧y2 = (x∨y1)∧y2 =

(x ∧ y2) ∨ (y1 ∧ y2) = 0 ∨ (y1 ∧ y2) = y1 ∧ y2. These two give us y1 = y2. Hence the

complement is unique.

Here we mention a nice characterisation of distributive lattice due to Oystein Ore

(1938). Consider the lattice of all subgroups of a group G. Oystein Ore proved that the

group G is locally cyclic iff the lattice of subgroups of G is distributive.

Boolean Lattice: A complemented distributive lattice is called a Boolean lattice.

Thus in a Boolean lattice every element has a unique complement.

Next we have some definitions and theorem(s) which investigate the structure of finite

distributive lattices:

Definition: LetD be a distributive lattice and J(D) denote the collection of all nonzero

join-irreducible elements of D. Then J(D) is a poset under the partial ordering inherited
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from D. For a ∈ D, let us define

r(a) = {x|x ≤ a, x ∈ J(D)} = (a] ∩ J(D)

i.e. r(a) is the set of join-irreducible elements below a.

Definition: Let P be a poset and A ⊆ P . We call A hereditary iff x ∈ A and y ≤ x

imply that y ∈ A. Let H(P ) denote the set of all hereditary subsets of P partially ordered

by set inclusion. The H(P ) is a lattice in which meet and join are intersection and union

respectively and hence H(P ) is a distributive lattice.

We have the following theorem

Theorem 7. Let D be a finite distributive lattice. Then D is isomorphic to H(J(D)).

Proof : Let us define the map Φ : D −→ H(J(D)) by aΦ = r(a). The we prove that

Φ is an isomorphism.

1-1ness: Take a, b ∈ D such that aΦ = bΦ. Then we have r(a) = r(b). This means

the two sets

r(a) = {x|x ≤ a, x ∈ J(D)}

and

r(b) = {y|y ≤ b, y ∈ J(D)}

are equal. This is possible only when a = b. This proves Φ is one-to-one.

Ontoness: we have to show that for every A ∈ H(J(D)), there exists an a ∈ D such

that aΦ = A. Let us set a =
∨
A (which exists because A is finite). Then as A′s elements

are join-irreducible and a ≤ a, for every a ∈ A, we get by definition r(a) ⊇ A. For

reverse inclusion, we take any x ∈ r(a). Then by definition x ≤ a. Then we can write

x = x ∧ a = x ∧
∨
A =

∨
{x ∧ y|y ∈ A}. Now since x is join-irreducible so we will have

x = x∧ y, for some y ∈ A. This means x ≤ y. But since A is hereditary, so it follows that
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x ∈ A. Therefore r(a) ⊆ A. The two containments together give us r(a) = A. Thus the

pre-image of A ∈ H(J(D)) is the join of A. Hence Φ is onto.

Φ is a homomorphism: By definition (a ∧ b)Φ = r(a ∧ b). Now we show that

r(a ∧ b) = r(a) ∩ r(b). We note that x ∈ r(a ∧ b) ⇔ x ≤ a ∧ b ⇔ x ≤ a and x ≤ b

⇔ x ∈ r(a) and x ∈ r(b)⇔ x ∈ r(a)∩ r(b). Hence we get r(a∧ b) = r(a)∩ r(b). Therefore

(a ∧ b)Φ = r(a ∧ b) = r(a) ∩ r(b) = aΦ ∧ bΦ.

Next, by definition (a∨ b)Φ = r(a∨ b). We prove that r(a∨ b) = r(a)∪r(b). It is trivial

that r(a)∪ r(b) ⊆ r(a∨ b). For reverse containment, let us take any x ∈ r(a∨ b). Then by

definition, x ≤ a ∨ b. From this we can write x = x ∧ (a ∨ b). Applying distributivity, this

can be written as x = (x∧a)∨(x∧b). Now since x is join-irreducible, we shall get x = x∧a

or x = x ∧ b and this implies that x ≤ a or x ≤ b. Then x ∈ r(a) or x ∈ r(b) which means

x ∈ r(a) ∪ r(b), proving that r(a ∨ b) ⊆ r(a) ∪ r(b). Thus the two containments together

imply that r(a ∨ b) = r(a) ∪ r(b). So we have (a ∨ b)Φ = r(a ∨ b) = r(a) ∪ r(b) = aΦ ∨ bΦ.

Therefore, Φ is a homomorphism.

Hence Φ is an isomorphism.

This proves the theorem.

Boolean Algebra: A Boolean algebra is a Bollean lattice in which 0, 1 and ′ (com-

plementation) are also regarded as operations. Thus a Boolean algebra is a system:

〈B;∧,∨,′ , 0, 1〉, where ∧, ∨ are binary operations; 0, 1 are nullary operations (which just

pick out an element of B)and ′ is a 1− ary operation.

Example: The (P (S),∩,∪) is a Boolean Algebra.

Next we define

Boolean Ring: A ring R with multiplicative identity in which every element is idem-

potent, that is, a2 = a, for all a ∈ R, is called a Boolean ring.

Boolean rings are Boolean algebras in disguise as stated in the following theorem.

Theorem 8. Every Boolean algebra is equivalent to a Boolean ring.
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Proof : We will not give the entire proof, rather we shall give sketch of the proof. Let

B be a Boolean algebra, then we define addition + and multiplication . by

a+ b = (a ∧ b′) ∨ (a′ ∧ b)

a.b = a ∧ b

Then it is easy to check that these addition and multiplication satisfy all the axioms of a

ring. Further, a2 = a.a = a ∧ a = a, for all a ∈ R and hence (B,+, .) is a Boolean ring.

Conversely, if B is Boolean ring with identity, then let’s define the join and meet by

a ∨ b = a+ b− ab

and

a ∧ b = ab

Its again an easy calculation to verify that these ∨ and ∧ satisfy all the algebraic axioms

of a lattice. Moreover, the additive and multiplicative identities 0, 1 of the Boolean ring

B act as the zero and unit element for this lattice. So B is bounded lattice. Further, for

any a ∈ B, The 1− a is its complement. Also the distributive identity is easily verifiable.

Hence (B,∨,∧) is a Boolean lattice.

Modular Lattices : Modular lattices are lattices that satisfy the following identity

(called the modular identity ), discovered by Richard Dedekind: if a 6 c, b ∈ L

c ∧ (a ∨ b) = a ∨ (b ∧ c) (4.2)
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Remark: In the equality (3.2), it is trivial that

c ∧ (a ∨ b) ≥ a ∨ (b ∧ c)

so to prove a lattice to be modular, it is sufficient to show that

c ∧ (a ∨ b) ≤ a ∨ (b ∧ c)

Examples:

i) By taking a 6 c in the distributive identity, we get the modular identity. Thus it

implies that every distributive lattice is modular.

ii) The lattice of all ideals of a ring is a modular lattice but not distributive, in general.

Counterexample : The lattice of subgroups of a group is not modular in general.

For example, the subgroups of the group A4 of all even permutaions on four symbols

do not form a modular lattice.

But in the case of normal subgroups it is true as the following theorem states

Theorem 9. The lattice of normal subgroups N -sub(G) of a group G is modular.

Proof : It is trivial to show that N -sub(G) is a poset under set containment. Now

for subgroups G1, G2 in N -sub(G), let ue define G1 ∧ G2 = G1 ∩ G2 and G1 ∨ G2 =

{g1g2 | g1 ∈ G1, g2 ∈ G2} = subgroup generated by G1, G2 which we shall denote by G1G2.

Then it is easy to check that G1 ∩ G2 and G1G2 are members of N -sub(G). To prove

N -sub(G) to be a modular lattice, we shall show that for G1, G2 in N -sub(G) such that

G2 ⊆ G1, G1 ∩ (G2G3) = G2(G1 ∩G3). For this take x ∈ G1 ∩ (G2G3). Then x ∈ G1 and

x ∈ G2G3.Thus x = g1 and x = g2g3, for some g1 ∈ G1, g2 ∈ G2, g3 ∈ G3. From these we
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can write g3 = g−1
2 g1 ∈ G1. Thus g3 ∈ G1 ∩G2 and then g2g3 ∈ G2(G1 ∩G3) which implies

that x ∈ G2(G1 ∩G3).Therefore we get

G1 ∩ (G2G3) ⊆ G2(G1 ∩G3)

Now as the reverse containment holds by the remark after the definition above, these

together yield the modular identity.

This proves that N -sub(G) is indeed a modular lattice.

Now we have a nice result characterising modular lattices:

Theorem 10. A lattice L is modular iff it does not contain a pentagon.

The proof of this theorem is similar to the proof of theorem 3.

Thus a modular lattice L is distributive iff it does not contain a diamond.

Next we define intervals in a lattice.

Interval: Let L be a lattice and a, b ∈ L. Then the interval [a, b] with a and b as

extremes is defined as follows

[a, b] = {x ∈ L : a ≤ x ≤ b}

Notion of Morphisms in Lattices:

In algebra morphism means preserving the operation. In lattice theory there are distinct

operations, hence we have the following definitions.

Definition: Let L and M be two lattices and f : L −→ M be a function. Then f is

isotone if x ≤ y implies f(x) ≤ f(y). f is join morphism if

f(x ∨ y) = f(x) ∨ f(y))

for all x, y ∈ L.
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f is called meet morphism if

f(x ∧ y) = f(x) ∧ f(y)

for all x, y ∈ L.

When f is both join morphism and meet morphism then f is called a morphism (or

lattice-morphism).

Like in the case of other algebraic structures, a morphism f is called a monomorphism

if it is 1 − 1, an epimorphism if it is onto, an isomorphism if it is both 1 − 1 and onto.

f is called an endomorphism if L = M and an automorphism if L = M and it is an

isomorphism.

In a modular lattice two intervals of specific form are isomorphic. We have the following

theorem

Theorem 11. Let L be a modular lattice and a, b ∈ L. Then the intervals I[a ∨ b, a] and

I[b, a ∧ b] are isomorphic.

Sketch of Proof : Let us define the function f : I[a∨b, a] −→ I[b, a∧b] by f(x) = x∧b,

for all x in the domain interval. Then it is easily seen that f is a lattice homomorphism.

To prove that it is a bijection, we define another function g : I[b, a ∧ b] −→ I[a ∨ b, a] by

g(y) = y ∨ a, for all y in the domain interval. Then we easily see (using the modularity of

L) that the compositions f ◦ g and g ◦ f are identity morphisms on the intervals I[b, a∧ b]

and I[a ∨ b, a] respectively. This establishes that the two intervals are isomorphic.
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Chapter 5

Congruences in Lattices

An equivalence relation � (that is, a reflexive, symmetric and transitive binary relation)

on a lattice L is called a congruence relation iff a0 ≡ b0(�) and a1 ≡ b1(�) imply that

a0 ∧ a1 ≡ b0 ∧ b1(�) and a0 ∨ a1 ≡ b0 ∨ b1(�).

Examples:

(1) In the integers Z, a congruence relation is the same as congruence mod n, for some

n. The case n = 0 gives the equality relation.

(2) In a group, a congruence relation is the same thing as the coset decomposition for

some normal subgroup and in a commutative ring it is the same thing as the coset

decomposition for an ideal.

(3) In a finite chain C, a congruence relation is any decomposition into intervals as

depicted in figure (5.1).

(4) A congruence relation of a lattice is shown in figure (5.2).

27



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 5.1: A congruence of a finite chain C7

Figure 5.2: Congruence of a lattice

Now we state (without proof) a very important lemma which helps us to determine

congruences of lattices.

Lemma 12. A non-empty binary relation � on a lattice L is a congruence relation iff �

satisfies the following (1) through (4):

(1) if a ≡ b(mod�), then a ∧ b ≡ a ∨ b(mod�).

(2) if a ≤ t ≤ b and a ≡ b(mod�), then t ≡ a ≡ b(mod�).

(3) if a ∧ b ≡ a(mod�), then b ≡ a ∨ b(mod�), and dually.

(4) if a ≡ b(mod�) and b ≡ c(mod�), then a ≡ c(mod�).

Remark: If a0, b0 are two elements of a lattice L, then the smallest congruence relation

�(a0, b0) on L that identifies a0 and b0 can be constructed by applying (1) above (unless
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a0 and b0 are already comparable), then we apply (2) and (3) repeatedly and then (4)

repeatedly. This congruence �(a0, b0) is called the principal congruence.

Congruence relations on an arbitrary lattice have an interesting connection with the

distributive lattices:

Definiton: Let L be an arbitrary lattice. Then the collection Con(L)of all congruence

relations of L form a lattice [5] with the meet and join defined as: for �1,�2 ∈ L, �1∧�2 =

�1 ∩�2, that is,

a ≡ b(�1 ∧�2)

iff a ≡ b(�1) and a ≡ b(�2).

The join �1 ∨ �2 is defined as: a ≡ b(�1 ∨ �2) iff there is a sequence c0 = a ∧

b, c1, ..., cn−1 = a ∨ b of elements of L such that c0 6 c1 6, ...,6 cn−1 and for each i,

0 6i� n− 1, ci ≡ ci+1(�1) or ci ≡ ci+1(�2).

Theorem 13. (N. Funayama and T. Nakayama) Con(L) is distributive lattice.

Proof : Let us take three congruences Θ,Φ,Ψ ∈ con(L). By the first remark of chapter

4, we trivially have

Θ ∧ (Φ ∨Ψ) ≥ (Θ ∧ Φ) ∨ (Θ ∧Ψ)

so we show the reverse inequality i.e.

(Θ ∧ Φ) ∨ (Θ ∧Ψ) ≥ Θ ∧ (Φ ∨Ψ)

Taking a ≡ b(Θ∧ (Φ∨Ψ)), we have a ≡ b(Θ) and a ≡ b(Φ∨Ψ)). Then by above lemma

a ≡ b(Θ) implies that a ∧ b ≡ a ∨ b(Θ). Now consider a ≡ b(Φ ∨ Ψ)). By the definition

of join of congruences, a ≡ b(Φ ∨ Ψ)) implies that there exist z0, z1, . . . , zn−1 such that

a∧ b = z0, z1, . . . , zn−1 = a∨ b such that for all 0 ≤ i ≤ n− 2, zi ≡ zi+1(Φ) or zi ≡ zi+1(Ψ)
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and so zi ≡ zi+1(Θ) for each 0 ≤ i ≤ n− 2. Therefore we have

(zi ≡ zi+1(Θ))and(zi ≡ zi+1(Φ)orzi ≡ zi+1(Ψ))

(zi ≡ zi+1(Θ))and(zi ≡ zi+1(Φ)or(zi ≡ zi+1(Θ))and(zi ≡ zi+1(Ψ)

(zi ≡ zi+1(Θ ∧ Φ))or(zi ≡ zi+1(Θ ∧Ψ)

for all 0 ≤ i ≤ n− 2. So by definition of the join a ≡ b(Θ ∧ Φ) ∨ (Θ ∧Ψ) and therefore

(Θ ∧ Φ) ∨ (Θ ∧Ψ) ≥ Θ ∧ (Φ ∨Ψ)

Hence the two inequalities together yield

(Θ ∧ Φ) ∨ (Θ ∧Ψ) = Θ ∧ (Φ ∨Ψ)

This proves that Con(L) is distributive lattice.

Homomorphisms and congruence relations express two different sides of the same phe-

nomenon. To get a feel of this fact, first we need to define the factor (quotient)lattices.

Factor Lattice: Let L be a lattice and Θ be a congruence on L. Let L/Θ denote the

collection of all congruence classes induced by the congruence Θ, that is,

L/Θ = {[a]Θ : a ∈ L}

Then it forms a lattice under

[a]Θ ∧ [b]Θ = [a ∧ b]Θ
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and

[a]Θ ∨ [b]Θ = [a ∨ b]Θ

It is easy to verify the well-definedness of the two operations.

This lattice is called the factor lattice of L modulo Θ. The following lemma says that

any factor lattice is a homomorphic image of a lattice:

Lemma 14. For the congruence Θ of a lattice L, the map ϕ : L −→ L/Θ defined by

x 7−→ [x]Θ is a homomorphism of L onto L/Θ.

Kernel of a homomorphism: Unlike the group theory or ring theory, there are three

kernel concepts in lattice theory. They are defined as follows:

Let ϕ : L −→ L1 be a homomorphism of L onto L1. Define a congruence relation

Θ as x ≡ y(Θ) iff xϕ = yϕ. Then this relation Θ is called the congruence kernel of the

homomorphism ϕ. If L1 has a zero, 0, the set of preimages of 0 forms and ideal of L. This

ideal is called ideal kernel of the homomorphism ϕ.

If for a congruence Θ of L, L/Θ has a zero, [a]Θ, then [a]Θ is an ideal of L, called the

ideal kernel of the congruence relation Θ.

Based on the nature of the congruence classes of a congruence Θ, we define some special

types of lattices:

Regular Lattices: Let L be a lattice. A congruence relation Θ of L is called regular,

if any congruence class of Θ determines the congruence. The lattice L is called regular if

all congruences of L are regular.

Example:
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p(q)

p1

0

q2
q

q1

0

q2
q

Figure 5.3: Regular Lattice N6 = N(p, q)

Remark: The lattice N6 has three congruence relations: the identity congruence rela-

tion ω, the universal congruence relation ι and a non-trivial congruence relation ψ, with

the congruence classes {0, q1, q2, q} and {p1, p(q)}.

Claim: Every non-trivial congruence relation of N6 coincides with the congruence

relation ψ with the above congruence classes.

Proof of the claim: For example, let us determine the congruence relation Θ =

con(q1, q2) generated by the pair (q1, q2). Then by definition the elements (q1, q2), (q2,

q1), (q1, q1), (q2, q2) belong to con(q1, q2). Now as (q1, q2), belong to Θ, so by the lemma

12(1), q1∧ q2 ≡ q1∨ q2(Θ) i.e. (0, q) belong to Θ. So the elements (q, 0), (0, 0), (q, q) should

also be in Θ. Next we note that q2 is such that 0 ≤ q2 ≤ q so on applying part (2) of the

lemma, we find that (q2, 0), (q2, q), (q1, 0), (q1, q) are elements of Θ. Then we should also

have (0, q2), (q, q2), (0, q1), (q, q1) in Θ. Next we note that q1∧p1 = 0 ≡ q1 under Θ and p(q)

is the join of p1 and q1, so applying part (3) of the lemma, we get p1 ≡ p(q)(Θ). Then it fol-

lows that (p(q), p1) also belong to Θ, and (p1, p1), (p(q), p(q)) should also belong to Θ. Ap-

plying part (4) of the lemma produces the pairs which have already been obtained. Thus we

get con(q1, q2) = {(0, 0), (p1, p1), (p(q), p(q)), (q, q), (q2, q2), (q1, q1), (q1, q2), (q2, q1), (0, q), (q, 0),

(q, q1), (q1, q), (q, q2), (q2, q), (p1, p(q)), (p(q), p1), (q1, 0), (0, q1), (q2, 0), (0, q2)}, containing 20

elements and its congruence classes are {0, q1, q2, q} and {p1, p(q)}.

Similarly, if we consider any other non-trivial congruence relation of the lattice N6, we

shall get the same congruence classes. Thus the claim is proved.
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Hence, Con(p1, 0) = ι. In other words, p1 ≡ 0 implies that q1 ≡ 0, but q1 ≡ 0 does not

imply that p1 ≡ 0.

We shall utilise the lattice N6 to construct a chopped lattice in a representation theorem

in chapter 6.

Uniform Lattices: Let L be a lattice. A congruence relation Θ of L is called uniform,

if any two congruence classes of Θ are of the same size (cardinality). The lattice L is called

uniform if all congruences of L are uniform.

Isoform Lattices : Let L be a lattice. We call a congruence relation � of L isoform,

if any two congruence classes of � are isomorphic (as lattices). Lattice L is called isoform

if all congruences of L are isoform.
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Chapter 6

Representation of Distributive

Lattices

In this chapter we shall study the representation of finite distributive lattices and some

related results. According to theorem 13, the congruence lattice, Con(L), of a finite lattice

L is a distributive lattice, a result by N. Funayama and T. Nakayama [12]. Its converse

is a result of R. P. Dilworth from 1944 ([6]): Every finite distributive lattice D can be

represented as the congruence lattice, Con(L), of a finite lattice L.

From application point of view, it is interesting to know the size of the lattice whose

congruence lattice is isomorphic to the lattice of Dilworth’s theorem. It was worked out

by Grätzer, Schmidt and Lakser: The lattice constructed by Dilworth ([6]) and Grätzer,

Schmidt ([7]) showed that if D is a distributive lattice having n join-irreducible elements

then there exists a lattice L with O(22n) elements such that D u Con(L). Grätzer and

Lakser ([8]) improved the size of the lattice L by showing that there exists a lattice L with

O(n3) elements such that D u Con(L) .

Further improving the size of the lattice Grätzer, Lakser and Schmidt ([9]) constructed
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a lattice L with O(n2) elements such that D u Con(L) and this is the best known.

This gives the theorem:

Theorem 15. Let α ≥ 2. If D is a distributive lattice with n join-irreducible elements,

then D can be represented by the congruence lattice of a lattice L with O(nα) elements.

The representation of distributive lattices has been studied extensively. Many results

have been obtained to make the lattice L nicer to represent D. Many properties (P)

have been obtained together with which L represents the finite distributive lattice D. For

example, if (P) is sectionally complemented or isoform, then L with (P) represents a finite

distributive lattice.

In chapter 1 we have defined atoms in a poset. Here we talk of the this and some

related notions in lattices.

Atoms in a Lattice: Let L be a lattice with underlying poset P . An element a ∈ L

is called an atom of L if it is an atom in P . L is called atomic if its underlying poset is

atomic. An atomic lattice L is called atomistic lattice if it is atomic and every non-minimal

element can be expressed as a join of atoms.

Example of atomistic lattice: Let S be any set and P (S) be its power set. It is

a lattice with the usual union and intersection as the lattice operations join and meet.

The empty set φ is the unique minimal element. As each singleton in P (S) covers φ, the

singletons are atoms of this lattice. Also, every non-empty set in P (S) has an atom below

it, so P (S) is atomic lattice. Moreover, every non-empty subset of P (S) can be written as

a union of singletons, it follows that P (S) is an atomistic lattice.

Example of non-atomistic lattice: For another example, we can consider Z+ ordered

by a ≤ b iff a|b. Then 1 is the minimal element and every prime p is an atom. Let us

define the lattice binary operations by a ∧ b = gcd(a, b), and a ∨ b = lcm(a, b). Then it is
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an atomic lattice. But it is not atomistic since, for example, 4 is not join of 2′s:

4 6= 2 ∨ 2 = lcm{2, 2} = 1

36 is not join of 2′s and 3’s:

36 6= 2 ∨ 2 ∨ 3 ∨ 3 = lcm{2, 2, 3, 3} = 6

Before mentioning the results describing the representation of finite distributive lattices,

we introduce the concept of chopped lattices which are important in representing the finite

distributive lattices.

Chopped Lattice: Let M be a poset satisfying the following two condition:

(1) inf{a, b} exists in M , for every a, b ∈M :

(2) sup{a, b} exists for those pairs a, b ∈M having a common upper bound in M .

We define in M :

a ∧ b = inf{a, b}

and

a ∨ b = sup{a, b}

whenever sup{a, b} exists in M . These make M into a partial lattice, called a chopped

lattice.

The congruences and ideals of chopped lattices are defined in the similar way as done

for lattices. So here we have the results similar to those stated for the lattices.

Lemma 16. The set Con(M) of all congruences of a finite chopped lattice M partially

ordered by set inclusion is a lattice.
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Example:

b

0

a

0

c

Figure 6.1: Chopped Lattice M0

Remark: One can obtain a chopped lattice M by taking a finite lattice L with unit

element 1 and defining M = L − 1 i.e. chopping off the unit element of a finite lattice

produces a chopped lattice. The converse also holds: by adding a unit element 1 to a

chopped lattice M , one obtains a finite lattice L.

Lemma 17. The set Id(M) of all ideals of a finite chopped lattice M partially ordered by

set inclusion is a lattice.

The importance of chopped lattices is revealed in the following lemma due to G. Grätzer

and H Lakser [11]:

Lemma 18. Let M be a finite chopped lattice. Then, for every congruence relation Θ of

M , there exists one and only one congruence relation Θ̄ of Id(M) such that, for a, b ∈M ,

id(a) ≡ id(b)(Θ̄) iff a ≡ b(Θ)

Proof : We shall use the notation id(a) = (a], for the principal ideal generated by a.

Let Θ be a congruence relation on M . For Y ⊆M , let us set [Y ]Θ = ∪([y]Θ|y ∈ Y ), which

is same as writing [Y ]Θ = {x|x ≡ y(Θ), for some y ∈ Y }. Now we define a binary relation

Θ̄ on Id(M) by I ≡ J(Θ̄) iff [I]Θ = [J ]Θ.

Claim: Θ̄ is a congruence relation on Id(M).

(i) Reflexivity: As [I]Θ = [I]Θ, it follows by definition that I ≡ I(Θ̄). So Θ̄ is reflexive.

(ii) Symmetricity: Let I ≡ J(Θ̄). Then by definition, [I]Θ = [J ]Θ, which can also

be written as [J ]Θ = [I]Θ and then by the definition we get J ≡ I(Θ̄). So Θ̄ is

symmetric.
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(iii) Transitivity: For three ideals I, J,K in Id(M), let us take I ≡ J(Θ̄) and J ≡ K(Θ̄).

Then by definition we shall get [I]Θ = [J ]Θ and [J ]Θ = [K]Θ which gives us the

equality [I]Θ = [K]Θ and then by definition it follows that I ≡ K(Θ̄). So Θ̄ is

transitive.

Thus upto here Θ̄ is a an equivalance relation.

Next we show that Θ̄ is compatible for the meet and join. To prove it we shall show

that if

I ≡ J(Θ̄)

and so

[I]Θ = [J ]Θ (6.1)

then for any ideal T ∈ Id(M),

I ∩ T ≡ J ∩ T (Θ̄) (6.2)

and

I ∨ T ≡ J ∨ T (Θ̄) (6.3)

To establish (6.2), let us take an x ∈ I ∩ T . Then x ∈ I. Now by definition of [I]Θ, we

have [I] ⊆ [I]Θ and by equation (6.1) we have [I]Θ ⊆ [J ]Θ, so x ∈ I implies that x ∈ [J ]Θ.

Then by definition of [J ]Θ, we shall have x ≡ y(Θ), for some y ∈ J . Now since Θ is a

congruence relation on M , so by x ≡ y(Θ) we can have x∧x ≡ x∧ y(Θ) which means that

x ≡ x ∧ y(Θ) (6.4)

Now y ∈ J and J is an ideal so by closure propert for meet, we shall have x ∧ y ∈ J .

Similarly, as x ∈ T and T is an ideal so we shall have x ∧ y ∈ T . These two together with

(6.4) imply that x ∈ J ∩ T . Thus we have I ∩ T ⊆ J ∩ T , which implies that [I ∩ T ]Θ ⊆
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[J ∩ T ]Θ. Similarly, we can show that [J ∩ T ]Θ ⊆ [I ∩ T ]Θ. These two containments

yield [I ∩ T ]Θ = [J ∩ T ]Θ. Therefore by definition of Θ̄, we get I ∩ T ≡ J ∩ T (Θ̄). This

establishes equation (6.2).

Next we establish (6.3). To prove it, we shall use the definition of join of two ideals

from chapter 2, where we have defined

I ∨ J =
⋃

(Ui(I, J)|i<ω)

Towards proving (6.3), we take an x ∈ I ∨ T . Then we shall have x ∈ Ui, for some i(i<ω).

Claim: Ui ⊆ [J ∨ T ]Θ, for all i(i<ω). We use induction on i. For i = 0, U0 = I ∨ T .

Now as [I]Θ = [J ]Θ and I ⊆ [I]Θ, so we have I ⊆ [I]Θ ⊆ [J ]Θ i.e. we get I ⊆ [J ]Θ.

Therefore we have U0 = I ∨ T ⊆ [J ]Θ ∪ T ⊆ [J ∨ T ]Θ. So for i = 0, it is true. Suppose

it holds for i − 1, that is Ui−1 ⊆ [J ∨ T ]Θ, then we shall show that Ui ⊆ [J ∨ T ]Θ. From

above we have x ∈ Ui, so by definition x ≤ t0 ∨ t1, for some t0, t1 ∈ Ui−1, and by induction

hypothesis Ui−1 ⊆ [J ∨ T ]Θ, so t0, t1 ∈ [J ∨ T ]Θ. Then by definition of [J ∨ T ]Θ, we shall

have t0 ≡ u0(Θ) and t1 ≡ u1(Θ), for some u0, u1 ∈ J ∨ T . From which we can have

t0 ≡ t0 ∧ u0(Θ) and t1 ≡ t1 ∧ u1(Θ) (6.5)

Now we note that t0 ∨ t1 is an upper bound for the two elements set {t0 ∧ u0, t1 ∧ u1}. So

by definiton of chopped lattice this set must have a supremum. Thus (t0 ∧ u0) ∨ (t1 ∧ u1))

does exist. Now by compatibility of Θ for join, we can write from eqns (6.5), t0 ∨ t1 ≡

((t0 ∧ u0) ∨ (t1 ∧ u1))(Θ). Also from above we have x ≤ t0 ∨ t1, which gives us

x = x ∧ (t0 ∨ t1) = x ∧ ((t0 ∧ u0) ∨ (t1 ∧ u1))(Θ) (6.6)

Now as u0, u1 ∈ J ∨ T and it is an ideal so we shall have t0 ∧ u0, t1 ∧ u1 ∈ J ∨ T and so by
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closure property for join, we will get

x ∧ ((t0 ∧ u0) ∨ (t1 ∧ u1)) ∈ J ∨ T (6.7)

Let us write x ∧ ((t0 ∧ u0) ∨ (t1 ∧ u1)) = t
′
, then t

′ ∈ J ∨ T and then by eqn (6.6), we can

write x ≡ t
′
(Θ), for t

′ ∈ J ∨ T . Then by definition of [J ∨ T ]Θ, we shal have x ∈ [J ∨ T ]Θ.

Hence the claim is true for all i(i<ω). Therefore we have Ui ⊆ [J ∨ T ]Θ, for all i(i<ω).

Now since I ∨T =
⋃

(Ui|i<ω) and each Ui ⊆ [J ∨T ]Θ, therefore
⋃

(Ui|i<ω) ⊆ [J ∨T ]Θ i.e.

I ∨ T ⊆ [J ∨ T ]Θ. Similarly, it can be shown that J ∨ T ⊆ [I ∨ T ]Θ. Then by definition of

Θ̄, these two containments yield

I ∨ T ≡ J ∨ T (Θ̄)

which establishes the compatibility for join.

This proves that Θ̄ is indeed a congruence relation on Id(M).

Now we prove the iff of the lemma as follows.

(⇒) Suppose (a] ≡ (b](Θ̄), then a ≡ b1(Θ) and a1 ≡ b(Θ), for some a1 ≤ a, b1 ≤ b. By

compatibility, it follows that a ∨ a1 ≡ b1 ∨ a1(Θ) and a1 ∨ b1 ≡ b ∨ b1(Θ). By transitivity,

these two together imply that a ∨ a1 ≡ b ∨ b1(Θ). But a1 ≤ a implies that a1 ∨ a = a, and

b1 ≤ b implies that b1 ∨ b = b. Therefore a ∨ a1 ≡ b ∨ b1(Θ) implies that a ≡ b(Θ).

(⇐) suppose that a ≡ b(Θ), then we show that (a] ≡ (b](Θ̄). Take any x ∈ (a], then

by definition of principal ideal generated by a, we have x ≤ a. Then from a ≡ b(Θ), we

get that x ≤ b(Θ) and so x ∧ b ≡ x(Θ) or x ≡ x ∧ b(Θ). This implies that (a] ⊆ [(b]]Θ.

Similarly, we can get (b] ⊆ [(a]]Θ. Therefore by definition of Θ̄, we get (a] ≡ (b](Θ̄).

The uniqueness of the congruence Θ̄ is easily verifiable.

This proves the lemma completely.

Remark: This result is very significant. It means that to construct a finite lattice L to
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represent a finite distributive lattice D as a congruence lattice, it is sufficient to construct

a finite chopped lattice M , since Con(M) ∼= Con(IdM) = Con(L), where L = IdM .

Now we state a representation theorem due to G. Grätzer and E. T. Schmidt [7]

Theorem 19. Every finite distributive lattice D can be represented as the congruence

lattice of a finite sectionally complemented lattice L.

We shall illustrate the above theorem in the form of the following theorem:

Theorem 20. Let P be a finite order. Then there exists a chopped lattice M such that

ConJM is isomorphic to P , where ConJM is the lattice of join irreducible congruences of

M .

Illustration: We illustrate it by taking a chain D of four elements and condsidering

the meet-semilattice M0 of join irreducible elemets of D together with 0. We use the lattice

N6 of figure 5.1 to construct the finite chopped lattice M . We take two copies N(a, b) and

N(b, c) of the gadget.

a

b

c

Figure 6.2: P

a(b)

a1

0

b2
b

b1
0

b2
b

b(c)

b1

0

c2
c

c1

0

c2
c

Figure 6.3: Lattices N(a, b) and N(b, c)
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They have a common ideal I = {0, b1} So we can merge them and form the chopped

lattice

M = Merge(N(a, b), N(b, c))

a

b

c

b1

0

c1

c
c2

0

b1

b(c)

c
c2

0

a1

a(b)

b

b2

0

b1
b

Figure 6.4: The merged lattice M

The proof of the fact that L = IdM is sectionally complemented is not so easy. Towards

proving this, G. Grätzer H. Lakser and M. Roody [7] have answered the following problem.

Problem: Let M be a finite sectionally complemented chopped lattice. Under what

conditions is IdM sectionally complemented?

Solution: G. Grätzer H. Lakser and M. Roody proved that if M is finite sectionally

complemented chopped lattice with exactly two maximal elements m1, m2 and m1 ∧m2 is

an atom of M , then IdM is sectionally complemented.

In continuation of the illustration for theorem 20, we need to find the join irreducible

congruences of the chopped lattice M in figure (6.4). We assert that these are the principle

congruences generated by the pairs (0, a1), (0, b1), (0, c1), where Con(0, a1), Con(0, b1),

Con(0, c1) can be determined applying lemma 12 repeatedly as follows (similar to as we

have done in claim in chapter 5): (We shall determine only one of these congruences, say,

Con(0, b1)) and shall list Con(0, a1) and Con(0, c1) directly).

We determine the congruence Con(0, b1) = Ψ by applying lemma 12 as follows:

By definition, the element (0, b1) belongs to Ψ.Then the elements (b1, 0), (0, 0), (b1, b1)

should also belong to Ψ. Now since b2 ∧ b1 = 0 ≡ b1(Ψ), so by lemma 12(3), b2 ≡ b1 ∨ b2 =
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b(Ψ) i.e. (b2, b) should belong to Ψ. Then we should have the elements (b, b2), ((b, b)),

(b2, b2) in Ψ too. Next pick the elements b1, a1 and see that (0, b1) belongs to Ψ so by part

(3) of the lemma, we should have the element (a1, a(b)) in Ψ and then must also have the

elements (a1, a1), (a(b), a1), (a(b), a(b)) in Ψ. Now the elements b1, c2, are such that (b1, 0)

is in Ψ so we shall have (c2, b(c)) also in Ψ. This will force the elements (c2, c2), (b(c), c2)

and (b(c), b(c)) to be in Ψ. Now we have (c2, b(c)) in Ψ such that c2 ≤ c ≤ b(c), so the

application of part (2) of the lemma gives that the elements (b(c), c), (c, b(c)), (c, c2), (c2, c)

are in Ψ, so by transitivity (c, c) should also be in Ψ. Looking at the elements b1, c1, we see

that (b1, 0) belongs to Ψ so the elements (c1, b(c)), (c1, c1), (b(c), c1) should also belong to

Ψ. Lastly, we have (b(c), c1) such that c1 ≤ c ≤ b(c), so part (2) of the lemma yields that

the pairs (c, c1), (c1, c) are also in Ψ. Finally, we get the congruence generated by (0, b1)

as Con(0, b1) = {(0, 0), (a1, a1), (a(b), a(b)), (b, b), (b2, b2), (b1, b1), (b(c), b(c)), (c, c), (c2, c2),

(c1, c1), (0, b1), (b1, 0), (b2, b), (b, b2), (a1, a(b)), (a(b), a1), (c2, b(c)), (b(c), c2), (b(c), c), (c, b(c)),

(c, c2), (c2, c), (c1, b(c)), (b(c), c1), (c, c1), (c1, c), (0, c1), (c1, 0), (b1, b(c)), (b(c), b1), (b1, c1),

(c1, b1), (0, b(c)), (b(c), 0), (b1, c), (c, b1), (b1, c2), (c2, b1), (c, 0), (0, c)}.

Similarly, we determine the congruences Con(0, a1) and Con(0, c1) generated by (0, a1),

(0, c1) which turn out to be

Con(0, a1) = {(0, 0), (a1, a1), (a(b), a(b)), (b, b), (b2, b2), (b1, b1), (b(c), b(c)), (c, c), (c2, c2),

(c1, c1), (0, a1), (a1, 0), (b2, a(b)), (a(b), b2), (a(b), b), (b, a(b)), (b, b2), (b2, b), (b1, a(b)), (a(b), b1),

(b, a(b), (b, b1), (b1, b), (0, b1), (b1, 0), (a1, a(b)), (a(b), a1), (c2, b(c)), (b(c), c2), (b(c), c), (c, b(c)),

(c, c2), (c2, c), (c1, b(c)), (b(c), c1), (c, c1), (c1, c), (0, c1), (c1, 0), (b1, b(c)), (b(c), b1), (b1, c1), (c1, b1),

(0, b(c)), (b(c), 0), (b1, c), (c, b1), (b1, c2), (c2, b1), (0, a(b)), (a(b), 0), (a1, b2), (b2, a1), (a1, b), (b, a1),

(a1, b1), (b1, a1), (c2, c1), (c1, c2), (a(b), c1), (c1, a(b)), (a, a(b)), (c, 0), (o, c), (c2, 0), (0, c2)}

and

Con(0, c1) = {(0, 0), (a1, a1), (a(b), a(b)), (b, b), (b2, b2), (b1, b1), (b(c), b(c)), (c, c), (c2, c2), (c1, c1),

(0, c1), (c1, 0), (c, c2), (c2, c), (b1, b(c)), (b(c), b1)}
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respectively.

Next we need to show that P and ConJM are isomorphic. This isomorphism is estab-

lished by sending x ∈ P to the principal congruence generated by the pair (0, x1), that is,

to Con(0, x1). Thus P ∼= ConJM .

This completes the illustration for the proof of theorem 20.

If we know the number of join-irreducible elements of a distributive lattice, then we

can have a nice representation. Before stating that, we have a definition

Definition: A lattice diagram is said to be planar if no two lines in it intersect. A

finite lattice is planar iff it has a planar diagram.

Theorem 21. Let D be a finite distributive lattice with n join-irreducible elements. Then

there exists a planar lattice L of O(n2) elements such that Con(L) ∼= D.

We shall illustrate the proof of theorem 21 on the following distributive lattice

p2

p1 p3

Figure 6.5: Distributive lattice D

The following figure shows the poset P of join-irreducible elements of D and the chain

C formed from P . The length of the chain will be 2P = 6 and the intervals of the chain are

marked with the elements of P . This marking is called coloring. To illustrate the proof of

p2

p1

p2

p3

p3

p3

p2

p2

p1

p1

Figure 6.6: The poset P and the chain C
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theorem 21, we use the following two building blocks M3 and N5,5 of figure 6.7 and figure

6.8 respectively.

p p p p

Figure 6.7: The first building block, for p<q

q

q p

q

q p

Figure 6.8: The second building block, for p<q

Now to construct the lattice L, we take C2(= C × C), the direct product of the chain

C of figure 6.6 with itself. We construct the lattice L by adding black-filled elements to

this direct poduct as follows: if both the lower edges of a covering square in the direct

product C2 have the same color, then we add an element to it to make it a covering M3.

If in C2 we have a covering C2 × C3 ( a rectangle in C2 with length C2 and breadth C3),

where the C2 edge is colored by p, the C3 edge is colored by q twice, where p<q then we

add an element to make it an N5,5. We obtain the lattice of figure 6.9. The copies of N5,5

in the diagram have been marked by black-filled elements.
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p1 p1

p1 p1

p2 p2

p2 p2

p3 p3

p3 p3

C C

Figure 6.9: The lattice L constructed from C2

It is easy to show that, in general, |L| ≤ kn2, for some constant k and that D ∼= Con(L).

This isomorphism is established by assigning to p ∈ P the congruence of L generated by

collapsing any (all) prime intervals of color p.
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